Streptococcus mutans is the primary etiological agent of human dental caries. The well-known extraordinary ability of S. mutans to adapt and survive the environment of human mouth is highly acidogenicity and strong exopolysaccharide (EPS) production, a skeleton of dental plaque (biofilm). In this research, the total biofilm biomass, as well as the contents of protein, intracellular polysaccharide (IPS), alkaline soluble polysaccharide (ASP), water soluble polysaccharide (WSP) in the biofilm treated with 150 M α-mangostin was reduced ca. 40% compared to those of the control in ethanol as the vehicle. Two important glycosyltranferases B and C, responsible for biofilm formation by S. mutans, showed to be very sensitive to α-mangostin. Under the treatment condition, biofilm structure was clearly changed. Non-uniform and bigger microcolonies were found in the treated biofilms. Effects of α-mangostin on expression of the virulent genes and the detailed changes in biofilm structure are now under examination. The results showed that the -mangostin is a new and potential anti-biofilm agent of S. mutans UA159.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.