Background: Gaps remain in the detection of nucleic acid test (NAT) yield and occult hepatitis B virus (HBV) infection (OBI) by current HBV surface antigen (HBsAg) assays. The lack of detection may be due to HBsAg levels below current assay detection limits, mutations affecting HBsAg assays or HBsAg levels, or the masking of HBsAg by antibody to HBsAg (anti-HBs). In this study, we evaluate the incremental detection of NAT yield and OBI from five diverse geographic areas by an improved sensitivity HBsAg assay and characterize the samples relative to the viral load, anti-HBs status, and PreS1–S2–S mutations. Included is a comparison population with HBV DNA levels comparable to OBI, but with readily detectable HBsAg (High Surface–Low DNA, HSLD). Methods: A total of 347 samples collected from the USA, South Africa, Spain, Cameroon, Vietnam, and Cote D’Ivoire representing NAT yield (HBsAg(−), antibody to HBV core antigen (anti-HBc)(−), HBV DNA(+), N = 131), OBI (HBsAg(−), anti-HBc(+), HBV DNA(+), N = 188), and HSLD (HBsAg(+), anti-HBc(+), HBV DNA(+), N = 28) were tested with ARCHITECT HBsAg NEXT (HBsAgNx) (sensitivity 0.005 IU/mL). The sequencing of the PreS1–S2–S genes from a subset of 177 samples was performed to determine the genotype and assess amino acid variability, particularly in anti-HBs(+) samples. Results: HBsAgNx detected 44/131 (33.6%) NAT yield and 42/188 (22.3%) OBI samples. Mean HBV DNA levels for NAT yield and OBI samples were lower in HBsAgNx(−) (50.3 and 25.9 IU/mL) than in HBsAgNx(+) samples (384.1 and 139.5 IU/mL). Anti-HBs ≥ 10 mIU/mL was present in 28.6% HBsAgNx(+) and 45.2% HBsAgNx(−) OBI, and in 3.6% HSLD samples. The genotypes were A1, A2, B, C, D, E, F, and H. There was no significant difference between HBsAgNx(−) and HBsAgNx(+) in the proportion of samples harboring substitutions or in the mean number of substitutions per sample in PreS1, PreS2, or S for the NAT yield or OBI (p range: 0.1231 to >0.9999). A total of 21/27 (77.8%) of HBsAgNx(+) OBI carried S escape mutations, insertions, or stop codons. HSLD had more PreS1 and fewer S substitutions compared to both HBsAgNx(−) and HBsAgNx(+) OBI. Mutations/deletions associated with impaired HBsAg secretion were observed in the OBI group. Conclusions: HBsAgNx provides the improved detection of NAT yield and OBI samples. Samples that remain undetected by HBsAgNx have exceptionally low HBsAg levels below the assay detection limit, likely due to low viremia or the suppression of HBsAg expression by host and viral factors.
Background Chikungunya (CHIKV), dengue (DENV), and Zika (ZIKV) viruses are of concern due to the potential of transfusion transmission in blood, especially in regions such as Southeast Asia where the viruses are endemic. The recent availability of nucleic acid testing (NAT) to screen blood donations on an automated platform provides the opportunity to detect potentially infectious units in asymptomatic donors. Study Design and Methods Three thousand blood donations from Vietnam and 6000 from Thailand were screened with a real‐time polymerase chain reaction (PCR) test (cobas CHIKV/DENV, Roche Diagnostics, Indianapolis, IN) and equal numbers on cobas Zika (Roche Diagnostics). Reactive samples were tested by alternative NAT with resolution of discordant results by heminested PCR. Throughput of simultaneous testing of the two assays on the cobas 8800 system (Roche Diagnostics) was evaluated. Results In Vietnam, 9 of 3045 samples were reactive for DENV and all were confirmed, for a prevalence (with 95% confidence interval [CI]) of 0.296% (0.135‐0.560). In Thailand, 2 of 6000 samples were reactive for CHIKV, 4 of 6000 for DENV, and 1 of 6005 for ZIKV, and all confirmed. The prevalence of CHIKV is 0.033% (0.004‐0.120), DENV 0.067% (0.018‐0.171), and ZIKV 0.017% (0.000‐0.093). The overall specificity for the cobas CHIKV/DENV and cobas Zika tests was 100% (99.959‐100). For the simultaneous assay testing, 960 test results were available in 7 hours and 53 minutes. Conclusion Detection of CHIKV, DENV, and ZIKV RNA in donor samples in Vietnam and Thailand indicate the presence of the virus in asymptomatic blood donors. The cobas 6800/8800 systems (Roche Molecular Systems, Pleasanton, CA) enable screening blood donations in endemic areas for these viruses together or separately.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.