This paper proposes a new approach for ranking efficiency units in data envelopment analysis as a modification of the super-efficiency models developed by Tone [1]. The new approach based on slacks-based measure of efficiency (SBM) for dealing with objective function used to classify all of the decision-making units allows the ranking of all inefficient DMUs and overcomes the disadvantages of infeasibility. This method also is applied to rank super-efficient scores for the sample of 145 agricultural bank branches in Viet Nam during 2007-2010. We then compare the estimated results from the new SCI model and the exsisting SBM model by using some statistical tests.
Purpose The purpose of this paper is to measure TFP growth and job reallocation in the Vietnamese manufacturing industry after the Doimoi period. Design/methodology/approach The study uses firm-level panel data from Vietnam’s annual enterprise survey data for 2000–2016 period in the Vietnamese manufacturing industry using Olley–Pakes static and dynamic productivity decomposition methods. Findings The aggregate productivity estimated from the WRDG method increased 2.323 percent, of which over 40 percent is due to the reallocation toward more productive firms. Olley–Pakes dynamic decomposition according to ownership, scale and industry shows that the contribution of private and state-owned firms and the contribution of small and medium firms and large firms to the TFP growth are 133, −33 percent, 58.56 and 41.44 percent, respectively. The within-firm productivity and net entry components are the main reasons for TFP growth rather than reallocation. The results show that the composition of the aggregate TFPs, estimated from WRDG, OP, LP and ACF, is correlated very high (over 80 percent) except for net entry components. Research limitations/implications The major limitation of this study is that the authors compute an aggregate productivity index using actual employment-based shares (still misallocation in labor), rather than optimal employment-based shares (no misallocation in labor). Originality/value Job reallocation between industries is attracting attention in developing countries, especially transition economies. However, knowledge about job reallocation among industries is limited. This paper assesses the level of job reallocation among private and state-owned firms, small and medium firms and large firms in Vietnam.
This study applies a stochastic frontier production approach to decompose the sources of total productivity (TFP) growth into technical progress and changes in technical efficiency of 8057 firms in Vietnamese manufacturing industries during 2003-2007. Using both total manufacturing industry and sub-manufacturing industrial regressions, the analysis focuses on the trend of technological progress (TP) and technical efficiency change (TEC), and the role of productivity change in economic growth. According to the estimated results, the annual technical progress for the manufacturing industry and sub-manufacturing industries are calculated directly from the estimated parameters of the translog stochastic frontier production function by taking a partial derivative of output with respect to time t. The average technical changes in manufacturing industry and sub-manufacturing industries are positive, with an average technical change about 5.2%, 5.8%, 5.4%, 11.8%, 4.6%, 4.1%, 7.3%, 4.8%, 4.8% and 4.8% for total sample, food products & beverages, textile & wearing apparel, footwear, paper & products, industrial chemicals, rubber & plastic products, non- metallic mineral, basic & fabricated metal and other sub-industries, respectively. Total TFP in the manufacturing sector has grown at the annual rate of 0.052, although the rate of growth decreased continuously during the sample period. For the sub-industry estimates during the sample period, TFP grew fastest in the footwear sub-industry, with annual average growth rate of 11.8%, followed by the rubber & plastic products with a rate of 7.3%, and the food products & beverages with a rate of 5.8% per annum
In this paper, we consider the problem to determine the optimal time to sell an asset that its price conforms to the Black-Schole model but its drift is a discrete random variable taking one of two given values and this probability distribution behavior changes chronologically. The result of finding the optimal strategy to sell the asset is the first time asset price falling into deterministic time-dependent boundary. Moreover, the boundary is represented by an increasing and continuous monotone function satisfying a nonlinear integral equation. We also conduct to find the empirical optimization boundary and simulate the asset price process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.