Anoectochilus roxburghii is a wild edible species and has been traditionally used for a wide range of diseases in many countries. Our research aims to find the optimal light-emitting diode (LED) lighting conditions to improve the growth and development of A. roxburghii seedling at the acclimation stage. Two-month-old explants were cultured under the various lighting conditions including red (R), blue (B), BR (one blue: four red), BRW151 (one blue: five red: one white), BRW142 (one blue: four red: two white), and fluorescent lamp (FL). The results showed that the lighting conditions not only affect the growth and morphology of plants but also the accumulation of total flavonoids. Single wavelengths (B or R LED) inhibited the growth and secondary biosynthesis of A. roxburghii, while the BR LED showed an enhancement in both growth and biomass accumulation. A. roxburghii plants were grown under BR LED light has average plant height (7.18 cm), stem diameter (17.6mm), number of leaves (5.78 leaves/tree), leaf area (4.67 cm2), fresh weight (0.459 g/tree), dry matter percentages (11.69%), and total flavonoid (1.811 mg/g FW) is considered to be superior to FL lamps and other LEDs in the experiment. This indicates that both blue and red wavelengths are required for the normal growth of A. roxburghii. To learn more about how light affects flavonoid biosynthesis, we evaluated the expression of genes involved in this process (pal, chs, chi, and fls) and found that BR LED light enhances the expression level of chi and fls genes compared to fluorescent lamps (1.18 and 1.21 times, respectively), leading to an increase in the flavonoid content of plant. Therefore, applying BR LED during in vitro propagation of A. roxburghii could be a feasible way to improve the medicinal value of this plant.
High thermal conductivity was obtained for nanofluid-based EG containing Cu nanoparticle-decorated Gr–MWCNT hybrid material synthesized by chemical reduction.
Recently, many scientists have been making remarkable efforts to enhance the efficiency of direct solar thermal absorption collectors that depends on working fluids. There are a number of heat transfer fluids being investigated and developed. Among these fluids, carbon nanomaterial-based nanofluids have become the candidates with the most potential by the heat absorbing and transfer properties of the carbon nanomaterials. This paper provides an overview of the current achievements in preparing and exploiting carbon nanomaterial-based nanofluids to direct thermal solar absorption. In addition, a brief discussion of challenges and recommendations for future work is presented.
Carbon nanotubes (CNTs) are one of the most valuable materials with high thermal conductivity (above 1750 W/m K compared to thermal conductivity of Ag 419 W/m K). Owing to their very high thermal conductivity, CNTs are one of the most suitable nanoadditives in fabricating the nanofluid with thermal conductivities that are significantly higher than those of the parent liquids even when the CNTs’ concentrations are negligible. This work presents a modified model for predicting the thermal conductivity of carbon nanotube-nanofluids (CNT-nanofluids), which take into consideration the effects of size, volume fraction, and thermal conductivity of CNTs as well as the properties of base liquid. The modified model is found to correctly predict the trends observed in experimental data for different combinations of CNT-nanofluids with varying concentrations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.