In this paper, the combined wind and thermal power plant systems are operated optimally to reduce the total fossil fuel cost (TFFC) of all thermal power plants and supply enough power energy to loads. The objective of reducing TFFC is implemented by using antlion algorithm (ALA), particle swarm optimization (PSO) and Cuckoo search algorithm (CSA). The best method is then determined based on the obtained TFFC from the three methods as dealing with two study cases. Two systems with eleven units including one wind power plant (WPP) and ten thermal power plants are optimally operated. The two systems have the same characteristic of MFSs but the valve loading effects (VLEs) on thermal power plants are only considered in the second system. The comparisons of TFFC from the two systems indicate that CSA is more powerful than ALA and PSO. Furthermore, CSA is also superior to the two methods in terms of faster search process. Consequently, CSA is a powerful method for the problem of optimal generation for wind-thermal power plant systems with consideration of MFSs from thermal power plants.
Power radial distribution systems are increasingly more and more important in transmitting the electric energy from power plants to customers. However, total loss in lines are very high. This issue can be solved by allocating capacitor banks. Determining the suitable allocation and optimal sizing of capacitor banks needs an efficient approach. In this study, the diffusion and update techniques-based algorithm (DUTA) is proposed for such reason. The efficiency of DUTA is inspected on two distribution systems consisting of 15bus and 33-bus systems with different study cases. The solutions attained by DUTA are competed with recently published methods. As a consequence, the method is more effective than the other methods in terms of the quality of solution.
Wind power plants (WPs) play a very important role in the power systems because thermal power plants (TPs) suffers from shortcomings of expensive cost and limited fossil fuels. As compared to other renewable energies, WPs are more effective because it can produce electricity all a day from the morning to the evening. Consequently, this paper integrates the optimal power generation of TPs and WPs to absolutely exploit the energy from WPs and reduce the total electricity generation cost of TPs. The target can be reached by employing a proposed method, called one evaluation-based cuckoo search algorithm (OEB-CSA), which is developed from cuckoo search algorithm (CSA). In addition, conventional particle swarm optimization (PSO) is also implemented for comparison. Two test systems with thirty TPs considering prohibited working zone and power reserve constraints are employed. The first system has one wind power plant (WP) while the second one has two WPs. The result comparisons indicate that OEB-CSA can be the best method for the combined systems with WPs and TPs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.