First-principles prediction of enhancement in the electrochemical potential of LiCoO 2 with aluminum substitution has been realized through earlier experiments. For safer and less expensive Li-ion batteries, it is desirable to have a similar enhancement for alternative cathode materials, LiFePO 4 and LiCoPO 4. Here, we present first-principles density functional theory based analysis of the effects of aluminum substitution on electrochemical potential of LiCoO 2 , LiFePO 4 and LiCoPO 4. While Al substitution for transition metal results in increase in electrochemical potential of LiCoO 2 , it leads to reduction in LiFePO 4 and LiCoPO 4. Through comparative topological analysis of charge density of these materials, we identify a ratio of Bader charges that correlates with electrochemical potential and determine the chemical origin of these contrasting effects: while electronic charge from lithium is transferred largely to oxygen in LiCoO 2 , it gets shared by the oxygen and Co/Fe in olivine phosphates due to strong covalency between O and Co/Fe. Our work shows that covalency of transition metal-oxygen bond plays a key role in determining battery potential.
This paper examines the shape dynamics of deformable elastic and viscoelastic particles in an ambient Newtonian fluid subjected to simple shear. The particles are allowed to undergo large deformation, with the elastic stress determined using the neo-Hookean constitutive relation. We first present a method to determine the shape dynamics of initially ellipsoidal particles that is an extension of the method of Roscoe (J. Fluid Mech., vol. 28, issue 2, 1967, pp. 273–293), originally used to determine the shape at steady state of an initially spherical particle. We show that our method recovers earlier results for the in-plane trembling and tumbling dynamics of initially prolate spheroids in simple shear flow, obtained by a different approach. We then examine the in-plane dynamics of oblate spheroids and triaxial ellipsoids in simple shear flow, and show that they too, like prolate spheroids, exhibit time-periodic tumbling or trembling dynamics, depending on the initial aspect ratios of the particle and the elastic capillary number $G \equiv \mu \dot {\gamma }/\eta$ , where $\mu$ is the viscosity of the fluid, $\eta$ is the elastic shear modulus of the particle and $\dot {\gamma }$ is the shear rate. In addition, we find a novel state wherein the particle extends indefinitely in time and asymptotically aligns with the flow axis. We demarcate all the dynamical regimes in the parameter space comprising $G$ and the initial particle aspect ratios. When the particles are viscoelastic, damped oscillatory dynamics is observed for initially spherical particles, and the tumbling–trembling boundary is altered for initially prolate spheroids so as to favour tumbling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.