The development of polymeric systems with tailored properties as nonviral gene carriers continues to be a challenging and exciting field of research. We report here the synthesis and characterization of biodegradable, temperature- and pH-sensitive carbohydrate-based cationic nanogels as effective gene delivery carriers to Hep G2 cells. The temperature-sensitive property of the nanogels allows their facile complexation of DNA, while the pH-sensitive property allows the degradation of nanogels followed by the release of plasmid in the endosome. The nanogels are synthesized via reversible addition-fragmentation chain transfer polymerization (RAFT) technique and are evaluated for their DNA condensation efficacy. The gene delivery efficacies of these nanogels are subsequently studied and it is found that these cationic glyconanogels can serve as potent gene delivery vectors in hepatocytes. It is found that the gene delivery efficacies of this system are similar to that of branched poly(ethyleneimine), which is used as a positive control. Moreover, these nanogels show desirable properties for systemic applications including low toxicity and degradation in acidic environment.
Cancer is a noncommunicable disease with a high worldwide incidence and mortality rate. The National Cancer Institute of Thailand reports increasing cumulative incidence of breast, colorectal, liver, lung, and cervical cancers, accounting for more than 60% of all cancers in the kingdom. In this current work, we attempt to elucidate the phytochemical composition of the okra (Abelmoschus esculentus (L.) Moench) seed extract (OSE) and study its anticancer activity, delivered in its native form as well as in the form of polymeric micelles with enhanced solubility, in three carcinoma cell lines (MCF-7, HeLa, and HepG2). The presence of flavonoid compounds in the OSE was successfully confirmed, and direct delivery had the highest cytotoxic effect on the breast cancer cell line (MCF-7), followed by the hepatocellular carcinoma (HepG2) and cervical carcinoma (HeLa) cell lines in that order, while its delivery in polymeric micelles further increased this effect only in the HepG2 cell line. The OSE's observed cytotoxic effects on cancer cell lines demonstrated a dose and time-dependent cell proliferation and migration inhibition plausibly due to VEGF production inhibition, leading to apoptosis and cell death, conceivably due to the four flavonoid compounds noted in the current study, one of which was isoquercitrin. However, in view of the latter compound's isolated effects being inferior to those observed by the OSE, we hypothesize that either isoquercitrin requires the biological synergy of any one or all of the observed flavonoids or any of the three in isolation or all in concert are responsible. Further studies are required to elucidate the nature of the three unknown compounds. Furthermore, as we encountered significant problems in dissolving the okra seed extract and creating the polymeric micelles, further studies are needed to devise a clinically beneficial delivery and targeting system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.