Food fortification with iron nanoparticles (NPs) could help prevent iron deficiency anemia, but the absorption pathway and biodistribution of iron-NPs and their bioavailability in humans is unclear. Dietary non-heme iron is physiologically absorbed via the divalent metal transporter-1 (DMT1) pathway. Using radio- iron isotope labelling in mice with a partial knockdown of intestine-specific DMT1, we assessed oral absorption and tissue biodistribution of nanostructured ferric phosphate (FePO4-NP; specific surface area [SSA] 98 m2g-1) compared to to ferrous sulfate (FeSO4), the reference compound. We show that absorption of iron from FePO4-NP appears to be largely DMT1 dependent and that its biodistribution after absorption is similar to that from FeSO4, without abnormal deposition of iron in the reticuloendothelial system. Furthermore, we demonstrate high bioavailability from iron NPs in iron deficient anemic women in a randomized, cross-over study using stable-isotope labelling: absorption and subsequent erythrocyte iron utilization from two 57Fe-labeled FePO4-NP with SSAs of 98 m2g−1 and 188 m2g−1 was 2.8-fold and 5.4-fold higher than from bulk FePO4 with an SSA of 25 m2g−1 (P < 0.001) when added to a rice and vegetable meal consumed by iron deficient anemic women. The FePO4-NP 188 m2g-1 achieved 72% relative bioavailability compared to FeSO4. These data suggest FePO4-NPs may be useful for nutritional applications.
Purpose Existing emission and toxicity characterization models in life cycle assessment are currently not suitable for assessing pesticide-related impacts of crop cultivation in tropical regions. This study aims to parameterize the scientific consensus model USEtox for Thai environments to derive toxicity characterization factors of pesticide emissions from agricultural systems in Thailand. Potential human toxicity and ecotoxicity impacts and related damage costs of pesticides used on nine crops cultivated in Thailand are quantified. Methods Considering country-specific conditions, USEtox was adapted by applying the landscape and consumption parameters specific to Thailand. Related Thai-specific characterization factors of identified pesticides used in Thai agriculture were quantified. Four emission inventory models were applied to determine pesticide emission fractions in different environmental compartments. The consistent combination of pesticide emission mass and associated characterization factors yielded potential toxicity impact scores. Pesticide impact-related damage costs (external costs) on human health and ecosystem quality were quantified using valuation factors for Thailand. The crops with the highest total damage costs were selected and compared with the annual net incomes of the respective crop production systems. Results and discussion Pesticide toxicity impacts assessed by using Thai-specific factors were different from the use of global average factors ranging from 1 to 169% (human toxicity) and from 0.1 to 3587% (ecotoxicity). Our results indicated the variability in impact scores influenced by emission modeling choices. Following PestLCI consensus emission estimation model, mango cultivation showed the highest human toxicity impacts of 0.07 DALY/ha, resulting in high human health damage costs mainly caused by Propineb (93%). Rice cultivation with a dry direct-seeded system exhibited the highest ecotoxicity impacts (3934 PDF m3 day/ha) and associated damage costs mainly caused by Oxadiazon (92%). Pesticides used in cultivation of nine crops resulted in total damage costs of 7188 and 3.01 million THB/crop-year for human health and ecotoxicity, respectively. Mango and rice production accounted for 70% and 17% of the total damage costs, which were 36% and 20% of the respective crops’ annual net income. Conclusions Our study illustrates the ranking of pesticides applied throughout the crop calendar causing toxicological impact and related damage costs on human health and ecosystem quality. This helps identify crops and the main contributors to pesticide-related toxicity impacts in Thailand. Our study highlights the need for proper emission quantification and for the use of characterization factors locally parameterized to increase accuracy. Our results will be useful for future improvement toward more sustainable pesticide use. Graphical abstract
An outdated version of the supplementary files 1 and 2 was originally published with this article and has now been replaced. The original article has been corrected.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.