Ziprasidone is a benzisothiazolyl piperazine derivative that was developed from the chemically related antipsychotic drug tiospirone, and it improves neurological functions of the ischemic brain and is effective in treatment of schizophrenia. Mesenchymal stem cells (MSCs) are considered as a leading candidate for neurological regenerative therapy because of their neural differentiation properties in damaged brain. We investigated whether the transplantation of neural progenitor cells (NPCs) derived from adipose mesenchymal stem cells combined with ziprasidone enhances neuroprotective effects in an animal model of focal cerebral ischemia. In combination therapy groups, significant reduction of infarct volume and improvement of neurological functions were observed at 3 days after middle cerebral artery occlusion (MCAO) compared with monotherapy. Co-administration of ziprasidone and NPCs enhanced the anti-apoptotic effect and reduced the number of terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive apoptotic cells compared with the NPCs alone group at 7 days after MCAO. Ziprasidone or the combination of ziprasidone and NPCs induced the expression of endogenous neurotrophic factor gene brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), and glial cell-derived neurotrophic factor (GDNF). The immunohistochemical investigation revealed that the ziprasidone and NPCs attenuated the increased intensity of microglial marker (Iba-1) in the infarcted cortical area. Moreover, the number of transplanted NPCs on day 7 with combination therapy was significantly higher than with NPCs alone. These effects might be responsible for improved functional behavior and increased survival of NPCs. Our finding indicates that combination therapy of ziprasidone and NPCs enhances neuroprotection against ischemic brain injury.
(2013) Combination effect of p-hydroxybenzyl alcohol and mesenchymal stem cells on the recovery of brain damage in a rat model of brain ischemia, Animal Cells and Systems, 17:3, 160-169, DOI: 10.1080/19768354.2013 p-Hydroxybenzyl alcohol (HBA), an active component of Gastrodia elata blume, has been reported to provide neuroprotection by preventing brain damage. Transplantation of mesenchymal stem cell (MSC) has been shown to ameliorate ischemic brain injury in animals. To explore a way that might enhance neuroprotection after brain stroke, we investigated whether the transplantation of neural progenitor cells (NPCs) derived from MSCs from adipose tissue combined with HBA may enhance neuroprotective effects in an animal model of brain stroke. Intracarotid injection of combination therapy groups showed a significant reduction of infarct volume by 2,3,5-triphenyltetrazolium chloride staining and an improvement of neurological functions were observed at 3 days after middle cerebral artery occlusion (MCAO), compared to monotherapy groups. In our studies, immunohistochemistry showed that NPCs are more likely to enter a damaged brain than a contralateral nonischemic brain. Coadministration of HBA and NPCs enhanced the anti-apoptotic effect and reduced the number of terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling-positive apoptotic cells compared to the vehicle and NPCs at 7 days after MCAO. HBA and the combination of HBA 'NPCs induced the expression of genes encoding antioxidant proteins, including PDI, Nrf2, endogenous neurotrophic factor gene brain-derived neurotrophic factor, NGF, and VEGF, which enhances angiogenesis in an ischemic brain. These effects might be responsible for the survival of NPCs and improved functional behavior. Our finding indicates that combination therapy of HBA and NPCs enhances neuroprotection against ischemic brain injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.