Fault Detection and Classification (FDC) based on Machine Learning (ML) approach was used to detect and classify mount head fault in the slider attachment process which causes the machine alarm 71 to occur which leads to 2% of machine downtime. This paper has focused on the use of classified pixel surface of mount head with fault difference conditions including Healthy, Fault I, Fault II, and Fault III to detect and diagnose mount head before a vacuum leak. The Artificial Neural Network (ANN) algorithm was a proposed classification model and has to be evaluated before using in the real processes. Three features of mount head surface pixel, i.e., inner, outer, and overall areas were investigated and used as model training data set. The experiment result indicates that the classification using the ANN model with three features performed with an accuracy of 94.3%. According to the result, it was found that the reliability of the production processes of FDC technique has increased as a result of the reduction of machine downtime by 1.886%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.