Highlights d Mice expressing analog-sensitive Cdk1 allow identification of Cdk1 substrates d Many Cdk1 substrates in ESCs are chromatin-bound at poised or transcribed genes d Cdk1 phosphorylates a large number of epigenetic regulators d Cdk1 phosphorylates and inactivates H3K79 methyltransferase Dot1l
Core cell cycle regulators, including cyclin-dependent kinases (CDKs), cyclins, and cyclin-dependent kinase inhibitors (CKIs), are known for their well-characterized roles in cell division. Several recent studies have shed light on the roles of these proteins in immune modulation. The development and activation of cells in the immune system take place not only during embryonic development but throughout the life of a multicellular organism. Cell cycle regulators are involved in the development of immune cells, partly as the machinery controlling the expansion and differentiation of the populations of immune cells. In addition, these proteins serve non-cell cycle functions. In this review, we summarize the emerging roles of cell cycle regulators in modulating functions of the immune system and discuss how they may be exploited as therapeutic targets.
Cholangiocarcinoma (CCA) is a bile duct cancer with a very poor prognosis. Currently, there is no effective pharmacological treatment available for it. We showed that CCA ubiquitously relies on cyclin-dependent kinases 4 and 6 (CDK4/6) activity to proliferate. Primary CCA tissues express high levels of cyclin D1 and the specific marker of CDK4/6 activity, phospho-RB Ser780. Treatment of a 15-CCA cell line collection by pharmacological CDK4/6 inhibitors leads to reduced numbers of cells in the S-phase and senescence in most of the CCA cell lines. We found that expression of retinoblastoma protein (pRB) is required for activity of the CDK4/6 inhibitor, and that loss of pRB conferred CDK4/6 inhibitor-drug resistance. We also identified that sensitivity of CCA to CDK4/6 inhibition is associated with the activated KRAS signature. Effectiveness of CDK4/6 inhibition for CCA was confirmed in the three-dimensional spheroid-, xenograft-, and patient-derived xenograft models. Last, we identified a list of genes whose expressions can be used to predict response to the CDK4/6 inhibitor. Conclusion: We investigated a ubiquitous dependency of CCA on CDK4/6 activity and the universal response to CDK4/6 inhibition. We propose that the CDK4/6-pRB pathway is a suitable therapeutic target for CCA treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.