This paper proposes an emotion detection method using a combination of dimensional approach and categorical approach. Thayer's model is divided into discrete emotion sections based on the level of arousal and valence. The main objective of the method is to increase the number of detected emotions which is used for emotion visualization. To evaluate the suggested method, we conducted various experiments with supervised learning and feature selection strategies. We collected 300 music clips with emotions annotated by music experts. Two feature sets are employed to create two training models for arousal and valence dimensions of Thayer's model. Finally, 36 music emotions are detected by proposed method. The results showed that the suggested algorithm achieved the highest accuracy when using RandomForest classifier with 70% and 57.3% for arousal and valence, respectively. These rates are better than previous studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.