Modern vaccine designs and studies of human leukocyte antigen (HLA)-mediated immune responses rely heavily on the knowledge of HLA allele-specific binding motifs and computational prediction of HLA-peptide binding affinity. Breakthroughs in HLA peptidomics have considerably expanded the databases of natural HLA ligands and enabled detailed characterizations of HLA-peptide binding specificity. However, cautions must be made when analyzing HLA peptidomics data because identified peptides may be contaminants in mass spectrometry or may weakly bind to the HLA molecules. Here, a hybrid de novo peptide sequencing approach was applied to large-scale mono-allelic HLA peptidomics datasets to uncover new ligands and refine current knowledge of HLA binding motifs. Up to 12-40% of the peptidomics data were low-binding affinity peptides with an arginine or a lysine at the C-terminus and likely to be tryptic peptide contaminants. Thousands of these peptides have been reported in a community database as legitimate ligands and might be erroneously used for training prediction models. Furthermore, unsupervised clustering of identified ligands revealed additional binding motifs for several HLA class I alleles and effectively isolated outliers that were experimentally confirmed to be false positives. Overall, our findings expanded the knowledge of HLA binding specificity and advocated for more rigorous interpretation of HLA peptidomics data that will ensure the high validity of community HLA ligandome databases.
Programmed cell death protein 1 (PD-1) plays a significant role in suppressing antitumor immune responses. Cancer treatment with immune checkpoint inhibitors (ICIs) targeting PD-1 has been approved to treat numerous cancers and is the backbone of cancer immunotherapy. Anti-PD-1 molecule is necessary for next-generation cancer immunotherapy to further improve clinical efficacy and safety as well as integrate into novel treatment combinations or platforms. We developed a highly efficient hybridoma generation and screening strategy to generate high-potency chimeric anti-PD-1 molecules. Using this strategy, we successfully generated several mouse hybridoma and mouse/human chimeric clones that produced high-affinity antibodies against human PD-1 with high-quality in vitro PD-1/PD-L1 binding blockade and T cell activation activities. The lead chimeric prototypes exhibited overall in vitro performance comparable to commercially available anti-PD-1 antibodies and could be qualified as promising therapeutic candidates for further development toward immuno-oncology applications.
Background: Exosomes are ubiquitous extracellular nanovesicles secreted from almost all living cells that are thought to be involved in several important cellular processes, including cell–cell communication and signaling. Exosomes serve as a liquid biopsy tool for clinical and translational research. Although many techniques have been used to isolate exosomes, including ultracentrigation, size-exclusion chromatography, and immunocapturing-based techniques, these techniques are not convenient, they require expensive instrumentation, and they are unhandy for clinical samples. Precipitation techniques from available commercial kits that contain polyethelene glycol (PEG) are now widely used, but these kits are expensive, especially if a large number of biological samples are to be processed. Objective: the purpose of this study is to compare and optimize the efficacy of different concentrations of PEG with two commercial kits ExoQuick (SBI) and Total Exosome Isolation (TEI) from Invitrogen in human plasma. Methods and Materials: we determined exosome quantity, size distribution, marker expression, and downstream application. Results: among the precipitation methods, we found the size of particles and concentrations with 10–20% PEG are similar to ExoQuick and better than TEI. Interestingly, we detected cfDNA with ExoQuick and 10–20% PEG but not TEI and 5% PEG. Moreover, 10% PEG detection of miR-122 and miR-16 expression was superior to ExoQuick and TEI. Furthermore, in proteomics results it also found the identified proteins better than commercial kits but there was a high level of contamination of other proteins in serum. Conclusions: together, these findings show that an optimal concentration of 10% PEG serves as a guide for use with clinical samples in exosome isolation for downstream applications.
Successful COVID-19 prevention requires additional measures beyond vaccination, social distancing, and masking. A nasal spray solution containing human IgG1 antibodies against SARS-CoV-2 (COVITRAP™) was developed to strengthen other COVID-19 preventive arsenals. Here, we evaluated its pseudovirus neutralization potencies, preclinical and clinical safety profiles, and intranasal SARS-CoV-2 inhibitory effects in healthy volunteers (NCT05358873). COVITRAP™ exhibited broadly potent neutralizing activities against SARS-CoV-2 with PVNT50 values ranging from 0.0035 to 3.1997 μg/ml for the following variants of concern (ranked from lowest to highest): Alpha, Beta, Gamma, Ancestral, Delta, Omicron BA.1, Omicron BA.2, Omicron BA.4/5, and Omicron BA.2.75. It demonstrated satisfactory preclinical safety profiles based on evaluations of in vitro cytotoxicity, skin sensitization, intracutaneous reactivity, and systemic toxicity. Its intranasal administration in rats did not yield any detected circulatory levels of the human IgG1 anti-SARS-CoV-2 antibodies at any time point during the 120 hours of follow-up. A double-blind, randomized, placebo-controlled trial (RCT) was conducted on 36 healthy volunteers who received either COVITRAP™ or a normal saline nasal spray at a 3:1 ratio. Safety of the thrice-daily intranasal administration for 7 days was assessed using nasal sinuscopy, adverse event recording, and self-reporting questionnaires. COVITRAP™ was well tolerated, with no significant adverse effects in healthy volunteers for the entire 14 days of the study. The intranasal SARS-CoV-2 inhibitory effects of COVITRAP™ were evaluated in nasal fluids taken from volunteers pre- and post-administration using a SARS-CoV-2 surrogate virus neutralization test. SARS-CoV-2 inhibitory effects in nasal fluids collected immediately or six hours after COVITRAP™ application were significantly increased from baseline for all three variants tested, including Ancestral, Delta, and Omicron BA.2. In conclusion, COVITRAP™ was safe for intranasal use in humans to provide SARS-CoV-2 inhibitory effects in nasal fluids that lasted at least six hours. Therefore, COVITRAP™ can be considered an integral instrument for COVID-19 prevention.
Modern vaccine designs and studies of human leukocyte antigen (HLA)-mediated immune responses rely heavily on the knowledge of HLA allele-specific binding motifs and computational prediction of HLA-peptide binding affinity. Breakthroughs in HLA peptidomics have considerably expanded the databases of natural HLA ligands and enabled detailed characterizations of HLA-peptide binding specificity. However, cautions must be made when analyzing HLA peptidomics data because identified peptides may be contaminants in mass spectrometry or may weakly bind to the HLA molecules. Here, a hybrid de novo peptide sequencing approach was applied to large-scale mono-allelic HLA peptidomics datasets to uncover new ligands and refine current knowledge of HLA binding motifs. Up to 12-40% of the peptidomics data were low-binding affinity peptides with an arginine or a lysine at the C-terminus and likely to be tryptic peptide contaminants. Thousands of these peptides have been reported in a community database as legitimate ligands and might be erroneously used for training prediction models. Furthermore, unsupervised clustering of identified ligands revealed additional binding motifs for several HLA class I alleles and effectively isolated outliers that were experimentally confirmed to be false positives. Overall, our findings expanded the knowledge of HLA binding specificity and advocated for more rigorous interpretation of HLA peptidomics data that will ensure the high validity of community HLA ligandome databases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.