SummaryData requirements are not harmonized globally for the regulation of food and feed derived from stacked genetically modified (GM) events, produced by combining individual GM events through conventional breeding. The data required by some regulatory agencies have increased despite the absence of substantiated adverse effects to animals or humans from the consumption of GM crops. Data from studies conducted over a 15‐year period for several stacked GM event maize (Zea mays L.) products (Bt11 × GA21, Bt11 × MIR604, MIR604 × GA21, Bt11 × MIR604 × GA21, Bt11 × MIR162 × GA21 and Bt11 × MIR604 × MIR162 × GA21), together with their component single events, are presented. These data provide evidence that no substantial changes in composition, protein expression or insert stability have occurred after combining the single events through conventional breeding. An alternative food and feed risk assessment strategy for stacked GM events is suggested based on a problem formulation approach that utilizes (i) the outcome of the single event risk assessments, and (ii) the potential for interactions in the stack, based on an understanding of the mode of action of the transgenes and their products.
Genetically modified (GM) plants used for food and feed have an established history of safe use over more than 25 years of their commercialization. Developers and regulatory authorities have accumulated extensive experience in evaluating their safety over time. The studies required for the safety assessment of GM plants used for food and feed should now be re-defined to leverage this experience and increased scientific knowledge. This paper, a companion paper for Waters et al. also published in this issue, presents a systematic approach for the safety assessment of newly expressed proteins (NEPs) in GM plants by evaluating the two components of risk: hazard and exposure. Although the paper focuses on NEPs, the principles presented could also apply to other expression products that do not result in a NEP. A set of core studies is recommended, along with supplementary studies, if needed, to evaluate whether the GM plant poses risk. Core studies include molecular and protein characterization and hazard identification encompassing toxicity and allergenicity. In the absence of hazard, core studies are sufficient to conclude that GM plants are as safe as their conventional counterparts. Depending on the GM trait and intended use, supplementary studies should be performed to characterize hazard and exposure when a hazard is identified. Problem formulation should be used to identify hypothesis-driven supplementary studies. Acute toxicity studies, compositional assessment, and dietary exposure assessment are recommended to be hypothesis-driven supplementary studies. Further discussion on the current food and feed safety assessment landscape for GM plants and the use of problem formulation as a tool for identifying supplementary studies can be found in the companion paper [62]. doi: 10.21423/jrs-v09i1brune
for a capture phase and the biotinylated version (Gal-NAc-PAA-Biotin) for detection. Based upon the validation data, the ELLA method can precisely and accurately determine soybean lectin levels in soybean seed. The validated ELLA method was used to quantify SBA in nine commercial soybean varieties introduced between 1972 and 2008 and demonstrated that the natural variability of SBA is subject to the effects of genotype and environment.
The pharmacokinetics and metabolic fate of labelled compounds were investigated after intramuscular administration of 3H-radiolabelled etiproston to nine cows. Elimination was rapid (t 1/2 beta = 2.8 h). Forty-eight h after administration 92.6% of the radioactivity had been eliminated, mainly via the urinary (66% at 48 h) and faecal routes (26% at 48 h). In comparison, little elimination in milk occurred (less than 0.034% dose/l by 24 h). Radioactivity at the injection site 48 h after administration was seen in one cow (< 4.68 x 10(-5%) dose/g). No radioactivity was detected in the tissues. Urinary metabolites were purified and isolated using XAD-2 extraction and preparative HPLC in reverse and normal phases. The main urinary metabolite, identified by mass spectrometry, was the tetranor acid derivative in equilibrium with its lactone form.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.