Mobile ions in hybrid perovskite semiconductors introduce a new degree of freedom to electronic devices suggesting applications beyond photovoltaics. An intuitive device model describing the interplay between ionic and electronic charge transfer is needed to unlock the full potential of the technology. We describe the perovskite-contact interfaces as transistors which couple ionic charge redistribution to energetic barriers controlling electronic injection and recombination. This reveals an amplification factor between the out of phase electronic current and the ionic current. Our findings suggest a strategy to design thin film electronic components with large, tuneable, capacitor-like and inductor-like characteristics. The resulting simple equivalent circuit model, which we verified with time-dependent drift-diffusion simulations of measured impedance spectra, allows a general description and interpretation of perovskite solar cell behaviour. Broader contextHighly efficient solar cells made using hybrid perovskite semiconductors may prove commercially viable. The success of these cheap materials is in part due to their ability to I.G., D.M. and P.B. initiated the project led by P.B. D.M. measured devices fabricated and developed by M.S., O.G., H.H., D.L. and P.D.; I.G. performed the simulations on software developed with P.C.; D.M. and P.B. developed the transistor description and circuit models; W.F. and D.M. performed the equivalent circuit fitting using circuit models coded by P.B. All authors discussed the results and participated in preparation of the manuscript drafted by P.B, D.M. I.G. and P.C.
The ideality factor determined by measuring the open circuit voltage (VOC) as function of light intensity is often used as a means to identify the dominant recombination mechanism in solar cells. However, applying this 'Suns-VOC' technique to perovskite cells is problematic since the VOC evolves with time in a way which depends on the previously applied bias (Vpre), the light intensity, and the device architecture/processing. Here we show that the dominant recombination mechanism in two structurally similar CH3NH3PbI3 devices containing either mesoporous Al2O3 or TiO2 layers can be identified from the signature of the transient ideality factor following application of a forward bias, Vpre, to the device in the dark. The transient ideality factor, is measured by monitoring the evolution of VOC as a function of time at different light intensities. The initial values of ideality found using this technique were consistent with corresponding photoluminescence vs intensity as well as electroluminescence vs current density measurements. Time-dependent simulations of the measurement on modelled devices, which include the effects of mobile ionic charge, show that Shockley Read Hall (SRH) recombination through deep traps at the charge collection interfaces is dominant in both devices. Using superimposed transient photovoltage measurements of the evolving VOC on bifacial devices we further show that the charge collection interface extends throughout the mesoporous TiO2 layer, consistent with a transient ideality signature corresponding to SRH recombination in the bulk of the film. This information could not be inferred from an ideality factor determined from the steady-state VOC values alone. We anticipate that the method we have developed will be useful for identifying performance bottlenecks in new variants of perovskite solar cells by comparison with the transient ideality signatures we have predicted for a range of possible recombination schemes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.