Predictive models are central to many scientific disciplines and vital for informing management in a rapidly changing world. However, limited understanding of the accuracy and precision of models transferred to novel conditions (their 'transferability') undermines confidence in their predictions. Here, 50 experts identified priority knowledge gaps which, if filled, will most improve model transfers. These are summarized into six technical and six fundamental challenges, which underlie the combined need to intensify research on the determinants of ecological predictability, including species traits and data quality, and develop best practices for transferring models. Of high importance is the identification of a widely applicable set of transferability metrics, with appropriate tools to quantify the sources and impacts of prediction uncertainty under novel conditions. Predicting the UnknownPredictions facilitate the formulation of quantitative, testable hypotheses that can be refined and validated empirically [1]. Predictive models have thus become ubiquitous in numerous scientific disciplines, including ecology [2], where they provide means for mapping species distributions, explaining population trends, or quantifying the risks of biological invasions and disease outbreaks (e.g., [3,4]). The practical value of predictive models in supporting policy and decision making has therefore grown rapidly (Box 1) [5]. With that has come an increasing desire to predict (see Glossary) the state of ecological features (e.g., species, habitats) and our likely impacts upon them [5], prompting a shift from explanatory models to anticipatory predictions [2]. However, in many situations, severe data deficiencies preclude the development of specific models, and the collection of new data can be prohibitively costly or simply impossible [6]. It is in this context that interest in transferable models (i.e., those that can be legitimately projected beyond the spatial and temporal bounds of their underlying data [7]) has grown.Transferred models must balance the tradeoff between estimation and prediction bias and variance (homogenization versus nontransferability, sensu [8]). Ultimately, models that can Highlights Models transferred to novel conditions could provide predictions in data-poor scenarios, contributing to more informed management decisions.The determinants of ecological predictability are, however, still insufficiently understood.Predictions from transferred ecological models are affected by species' traits, sampling biases, biotic interactions, nonstationarity, and the degree of environmental dissimilarity between reference and target systems.We synthesize six technical and six fundamental challenges that, if resolved, will catalyze practical and conceptual advances in model transfers.We propose that the most immediate obstacle to improving understanding lies in the absence of a widely applicable set of metrics for assessing transferability, and that encouraging the development of models grounded in well-established mech...
Species distribution models (SDMs) constitute the most common class of models across ecology, evolution and conservation. The advent of ready‐to‐use software packages and increasing availability of digital geoinformation have considerably assisted the application of SDMs in the past decade, greatly enabling their broader use for informing conservation and management, and for quantifying impacts from global change. However, models must be fit for purpose, with all important aspects of their development and applications properly considered. Despite the widespread use of SDMs, standardisation and documentation of modelling protocols remain limited, which makes it hard to assess whether development steps are appropriate for end use. To address these issues, we propose a standard protocol for reporting SDMs, with an emphasis on describing how a study's objective is achieved through a series of modeling decisions. We call this the ODMAP (Overview, Data, Model, Assessment and Prediction) protocol, as its components reflect the main steps involved in building SDMs and other empirically‐based biodiversity models. The ODMAP protocol serves two main purposes. First, it provides a checklist for authors, detailing key steps for model building and analyses, and thus represents a quick guide and generic workflow for modern SDMs. Second, it introduces a structured format for documenting and communicating the models, ensuring transparency and reproducibility, facilitating peer review and expert evaluation of model quality, as well as meta‐analyses. We detail all elements of ODMAP, and explain how it can be used for different model objectives and applications, and how it complements efforts to store associated metadata and define modelling standards. We illustrate its utility by revisiting nine previously published case studies, and provide an interactive web‐based application to facilitate its use. We plan to advance ODMAP by encouraging its further refinement and adoption by the scientific community.
After decades of extensive surveying, knowledge of the global distribution of species still remains inadequate for many purposes. In the short to medium term, such knowledge is unlikely to improve greatly given the often prohibitive costs of surveying and the typically limited resources available. By forecasting biodiversity patterns in time and space, predictive models can help fill critical knowledge gaps and prioritise research to support better conservation and management. The ability of a model to predict biodiversity metrics in novel environments is termed “transferability,” and models with high transferability will be the most useful in this context. Despite their potentially broad utility, little guidance exists on what confers high transferability to biodiversity models. We synthesise recent advances in biodiversity model transfers to facilitate increased understanding of what underpins successful model transferability, demonstrating that a consistent approach has so far been lacking but is essential for achieving high levels of repeatability, transparency and accountability of model transfers. We provide a set of guidelines to support efficient learning and the improvement of model transferability.
1. Baited remote underwater stereo-video systems (stereo-BRUVs) are a popular tool to sample demersal fish assemblages and gather data on their relative abundance and body size structure in a robust, cost-effective and non-invasive manner. Given the rapid uptake of the method, subtle differences have emerged in the way stereo-BRUVs are deployed and how the resulting imagery is annotated. These disparities limit the interoperability of datasets obtained across studies, preventing broadscale insights into the dynamics of ecological systems. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Despite being identified as a driver of mobile predator aggregations (hotspots) in both marine and terrestrial environments, topographic complexity has long remained a challenging concept for scientists to visualise and a difficult parameter to estimate. It is only with the advent of high-speed computers and the recent popularisation of geographical information systems (GIS) that terrain attributes have begun to be quantitatively measured in three-dimensional space and related to wildlife dynamics, making the well-established field of geomorphometry (or 'digital terrain modelling') a discipline of growing appeal to biologists. Although a diverse array of numerical metrics is now available to describe the shape, geometry and physical properties of natural habitats, few of these are known to, or adequately used by, ecologists. In this review, we examine the nature and usage of 56 geomorphometrics extracted from the ecological modelling literature over a period of 32 years (1979-2011). We show that, in studies of mobile predators, numerous topographic variables have largely been overlooked in favour of single basic metrics that do not, on their own, fully capture the complexity of continuous landscapes. Based on a simulation approach, we assess the redundancy and correlation structure of these metrics and demonstrate that a majority are highly collinear. We highlight a suite of 7-8 complementary metrics which best explain topographic patterns across a bathymetric grid of the west Australian seafloor, and contend that field and analytical protocols should prioritise variables of these types, particularly when the responses of predator populations to physical habitat features are of interest. We suggest that prominent structures such as canyons, seamounts or mountain chains can serve as useful proxies for predator hotspots, especially in remote locations where access to high-resolution biological data is often limited.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.