Anti-CD3 immunotoxins exhibit considerable promise for the induction of transplantation tolerance in pre-clinical large animal models. Recently an anti-human anti-CD3epsilon single-chain immunotoxin based on truncated diphtheria toxin has been described that can be expressed in CHO cells that have been mutated to diphtheria toxin resistance. After the two toxin glycosylation sites were removed, the bioactivity of the expressed immunotoxin was nearly equal to that of the chemically conjugated immunotoxin. This immunotoxin, A-dmDT390-sFv, contains diphtheria toxin to residue 390 at the N-terminus followed by VL and VH domains of antibody UCHT1 linked by a (G(4)S)(3) spacer (sFv). Surprisingly, we now report that this immunotoxin is severely compromised in its binding affinity toward CD3(+) cells as compared with the intact parental UCHT1 antibody, the UCHT1 Fab fragment or the engineered UCHT1 sFv domain alone. Binding was increased 7-fold by adding an additional identical sFv domain to the immunotoxin generating a divalent construct, A-dmDT390-bisFv (G(4)S). In vitro potency increased 10-fold over the chemically conjugated immunotoxin, UCHT1-CRM9 and the monovalent A-dmDT390-sFv. The in vivo potency of the genetically engineered immunotoxins was assayed in the transgenic heterozygote mouse, tgepsilon 600, in which the T-cells express human CD3epsilon as well as murine CD3epsilon. T-cell depletion in the spleen and lymph node observed with the divalent construct was increased 9- and 34-fold, respectively, compared with the monovalent construct. The additional sFv domain appears partially to compensate for steric hindrance of immunotoxin binding due to the large N-terminal toxin domain.
The HLA-D region of the human major histocompatibility complex (MHC) has been shown to be homologous to the murine I region in terms of both structure and function. Both regions encode class II MHC molecules which restrict T-lymphocyte interactions with antigen-presenting cells. We have recently described the MHC restriction and antigen specificities of human T-lymphocyte clones directed at strain A influenza virus. The majority of T-lymphocyte clones recognized antigen in the context of cell surface interaction products encoded by HLA-D/DR genes. However, a few clones recognized antigen presented by cells histoincompatible for D/DR antigens. We report here that some of these clones recognized viral antigens in association with antigens encoded by genes identical with or closely linked to the recently described secondary B-cell (SB) locus of the MHC. This is the first report that SB-restricted antigen recognition may form an integral part of normal, human immune responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.