ObjectivesTo describe the incidence rate, severity, burden and aetiology of medical attention and time-loss injuries across five consecutive seasons at a professional ballet company.MethodsMedical attention injuries, time-loss injuries and dance exposure hours of 123 professional ballet dancers (women: n=66, age: 28.0±8.3 years; men: n=57, age: 27.9±8.5 years) were prospectively recorded between the 2015/2016 and 2019/2020 seasons.ResultsThe incidence rate (per 1000 hours) of medical attention injury was 3.9 (95% CI 3.3 to 4.4) for women and 3.1 (95% CI 2.6 to 3.5) for men. The incidence rate (per 1000 hours) of time-loss injury was 1.2 (95% CI 1.0 to 1.5) for women and 1.1 (95% CI 0.9 to 1.3) for men. First Soloists and Principals experienced between 2.0–2.2 additional medical attention injuries per 1000 hours and 0.9–1.1 additional time-loss injuries per 1000 hours compared with Apprentices (p≤0.025). Further, intraseason differences were observed in medical attention, but not time-loss, injury incidence rates with the highest incidence rates in early (August and September) and late (June) season months. Thirty-five per cent of time-loss injuries resulted in over 28 days of modified dance training. A greater percentage of time-loss injuries were classified as overuse (women: 50%; men: 51%) compared with traumatic (women: 40%; men: 41%).ConclusionThis is the first study to report the incidence rate of medical attention and time-loss injuries in professional ballet dancers. Incidence rates differed across company ranks and months, which may inform targeted injury prevention strategies.
ObjectivesTo evaluate the effect of a gluteal activation warm-up on the performance of an explosive exercise (the high hang pull (HHP)).MethodsSeventeen professional rugby union players performed one set of three HHPs (with 80% of their one repetition maximum load) following both a control and activation warm-up. Peak electrical activity of the gluteus maximus and medius was quantified using electromyography (EMG). In addition, the kinematics and kinetics of nine players was also recorded using force plate and motion capture technology. These data were analysed using a previously described musculoskeletal model of the right lower limb in order to provide estimates of the muscular force expressed during the movement.ResultsThe mean peak EMG activity of the gluteus maximus was significantly lower following the activation warm-up as compared with the control (p<0.05, effect size d=0.30). There were no significant differences in the mean peak estimated forces in gluteus maximus and medius, the quadriceps or hamstrings (p=0.053), although there was a trend towards increased force in gluteus maximus and hamstrings following the activation warm-up. There were no differences between the ground reaction forces following the two warm-ups.ConclusionThis study suggests that a gluteal activation warm-up may facilitate recruitment of the gluteal musculature by potentiating the glutes in such a way that a smaller neural drive evokes the same or greater force production during movement. This could in turn potentially improve movement quality.
FreeBody is a musculoskeletal model of the lower limb used to calculate predictions of muscle and joint contact forces. The validation of FreeBody has been described in a number of publications; however, its reliability has yet to be established. The purpose of this study was, therefore, to establish the test–retest reliability of FreeBody in a population of healthy adults in order to add support to previous and future research using FreeBody that demonstrates differences between cohorts after an intervention. We hypothesized that test–retest estimations of knee contact forces from FreeBody would demonstrate a high intra-class correlation. Kinematic and kinetic data from nine older participants (4 men: mean age = 63 ± 11 years; 5 women: mean age = 49 ± 4 years) performing level walking and stair ascent was collected on consecutive days and then analyzed using FreeBody. There was a good level of intra-session agreement between the waveforms for the individual trials of each activity during testing session 1 (R = 0.79–0.97). Similarly, overall there was a good inter-session agreement within subjects (R = 0.69–0.97) although some subjects showed better agreement than others. There was a high level of agreement between the group mean waveforms of the two sessions for all variables (R = 0.882–0.997). The intra-class correlation coefficients (ICC) were very high for peak tibiofemoral joint contact forces (TFJ) and hamstring forces during gait, for peak patellofemoral joint contact forces and quadriceps forces during stair ascent and for peak lateral TFJ and the proportion of TFJ accounted for by the medial compartment during both tasks (ICC = 0.86–0.96). Minimal detectable change (MDC) of the peak knee forces during gait ranged between 0.43 and 1.53 × body weight (18–170% of the mean peak values). The smallest MDCs were found for medial TFJ share (4.1 and 5.8% for walking and stair ascent, respectively, or 4.8 and 6.7% of the mean peak values). In conclusion, the results of this study support the use of FreeBody to investigate the effect of interventions on muscle and joint contact forces at the cohort level, but care should be taken if using FreeBody at the subject level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.