Trypanosoma cruzi is a protozoan parasite of humans and animals, affecting 10 to 20 million people and innumerable animals, primarily in the Americas. Despite being the largest cause of infection-induced heart disease worldwide, even among the neglected tropical diseases (NTDs) T. cruzi is considered one of the least well understood and understudied. The genetic complexity of T. cruzi as well as the limited set of efficient techniques for genome engineering contribute significantly to the relative lack of progress in and understanding of this pathogen. Here, we adapted the CRISPR-Cas9 system for the genetic engineering of T. cruzi, demonstrating rapid and efficient knockout of multiple endogenous genes, including essential genes. We observed that in the absence of a template, repair of the Cas9-induced double-stranded breaks (DSBs) in T. cruzi occurs exclusively by microhomology-mediated end joining (MMEJ) with various-sized deletions. When a template for DNA repair is provided, DSB repair by homologous recombination is achieved at an efficiency several orders of magnitude higher than that in the absence of CRISPR-Cas9-induced DSBs. We also demonstrate the high multiplexing capacity of CRISPR-Cas9 in T. cruzi by knocking down expression of an enzyme gene family consisting of 65 members, resulting in a significant reduction of enzymatic product with no apparent off-target mutations. Lastly, we show that Cas9 can mediate disruption of its own coding sequence, rescuing a growth defect in stable Cas9-expressing parasites. These results establish a powerful new tool for the analysis of gene functions in T. cruzi, enabling the study of essential genes and their functions and analysis of the many large families of related genes that occupy a substantial portion of the T. cruzi genome.
During cell division, chromosome segregation is orchestrated by the interaction of spindle microtubules with the centromere. Accurate attachment of spindle microtubules to kinetochore requires the chromosomal passenger of Aurora B kinase complex with borealin, INCENP and survivin (SUR). The current working model argues that SUR is responsible for docking Aurora B to the centromere whereas its precise role in Aurora B activation has been unclear. Here, we show that Aurora B kinase activation requires SUR priming phosphorylation at Ser20 which is catalyzed by polo-like kinase 1 (PLK1). Inhibition of PLK1 kinase activity or expression of non-phosphorylatable SUR mutant prevents Aurora B activation and correct spindle microtubule attachment. The PLK1-mediated regulation of Aurora B kinase activity was examined in real-time mitosis using fluorescence resonance energy transfer-based reporter and quantitative analysis of native Aurora B substrate phosphorylation. We reason that the PLK1-mediated priming phosphorylation is critical for orchestrating Aurora B activity in centromere which is essential for accurate chromosome segregation and faithful completion of cytokinesis.
Faithful chromosome segregation in mammalian cells requires the bi-orientation of sister chromatids which relies on sensing correct attachments between spindle microtubules and kinetochores. Although the mechanisms underlying cyclin-dependent kinase 1 (CDK1) activation that triggers mitotic entry is extensively studied, the regulatory mechanisms that couple CDK1-cyclin B activity to chromosome stability are not well understood. Here, we identified a signaling axis in which Aurora B activity is modulated by CDK1-cyclin B via acetyltransferase TIP60 (Tat-interactive protein 60 kDa) in human cell division. CDK1-cyclin B phosphorylated Ser90 of TIP60, which elicited TIP60-dependent acetylation of Aurora B and promoted accurate chromosome segregation in mitosis. Mechanistically, TIP60 acetylation of Aurora B at Lys215 protected the phosphorylation of its activation loop from PP2A reactivation-elicited dephosphorylation to ensure a robust, error-free metaphase-anaphase transition. These findings delineated a conserved signaling cascade that integrates protein phosphorylation and acetylation to cell cycle progression for maintenance of genomic stability.
Background: KMN (KNL/MIS12/NDC80) is a kinetochore constituent essential for chromosome movements in mitosis. Results: KMN protein specifies the kinetochore localization of SKAP. SKAP regulates spindle microtubule dynamics for accurate chromosome movements. Conclusion: The MIS13-SKAP interaction links kinetochore structural components to dynamic microtubule plus-ends. Significance: MIS13-SKAP interaction governs chromosome dynamics and stability in mitosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.