The two-machine permutation flow shop scheduling problem with buffer is studied for the special case that all processing times on one of the two machines are equal to a constant c. This case is interesting because it occurs in various applications, e.g., when one machine is a packing machine or when materials have to be transported. Different types of buffers and buffer usage are considered. It is shown that all considered buffer flow shop problems remain NP-hard for the makespan criterion even with the restriction to equal processing times on one machine. However, the special case where the constant c is larger or smaller than all processing times on the other machine is shown to be polynomially solvable by presenting an algorithm (2BF-OPT) that calculates optimal schedules in [Formula: see text] steps. Two heuristics for solving the NP-hard flow shop problems are proposed: i) a modification of the commonly used NEH heuristic (mNEH) and ii) an Iterated Local Search heuristic (2BF-ILS) that uses the mNEH heuristic for computing its initial solution. It is shown experimentally that the proposed 2BF-ILS heuristic obtains better results than two state-of-the-art algorithms for buffered flow shop problems from the literature and an Ant Colony Optimization algorithm. In addition, it is shown experimentally that 2BF-ILS obtains the same solution quality as the standard NEH heuristic, however, with a smaller number of function evaluations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.