Canine degenerative myelopathy (DM) is a fatal neurodegenerative disease prevalent in several dog breeds. Typically, the initial progressive upper motor neuron spastic and general proprioceptive ataxia in the pelvic limbs occurs at 8 years of age or older. If euthanasia is delayed, the clinical signs will ascend, causing flaccid tetraparesis and other lower motor neuron signs. DNA samples from 38 DM-affected Pembroke Welsh corgi cases and 17 related clinically normal controls were used for genome-wide association mapping, which produced the strongest associations with markers on CFA31 in a region containing the canine SOD1 gene. SOD1 was considered a regional candidate gene because mutations in human SOD1 can cause amyotrophic lateral sclerosis (ALS), an adult-onset fatal paralytic neurodegenerative disease with both upper and lower motor neuron involvement. The resequencing of SOD1 in normal and affected dogs revealed a G to A transition, resulting in an E40K missense mutation. Homozygosity for the A allele was associated with DM in 5 dog breeds: Pembroke Welsh corgi, Boxer, Rhodesian ridgeback, German Shepherd dog, and Chesapeake Bay retriever. Microscopic examination of spinal cords from affected dogs revealed myelin and axon loss affecting the lateral white matter and neuronal cytoplasmic inclusions that bind anti-superoxide dismutase 1 antibodies. These inclusions are similar to those seen in spinal cord sections from ALS patients with SOD1 mutations. Our findings identify canine DM to be the first recognized spontaneously occurring animal model for ALS.
We show that an applied electric field in which the polarity is reversed every 15 minutes can improve the outcome from severe, acute spinal cord injury in dogs. This study utilized naturally injured, neurologically complete paraplegic dogs as a model for human spinal cord injury. The recovery of paraplegic dogs treated with oscillating electric field stimulation (OFS) (approximately 500 to 600 microV/mm; n = 20) was compared with that of sham-treated animals (n = 14). Active and sham stimulators were fabricated in West Lafayette, Indiana. They were coded, randomized, sterilized, and packaged in Warsaw, Indiana, and returned to Purdue University for blinded surgical implantation. The stimulators were of a previously unpublished design and meet the requirements for phase I human clinical testing. All dogs were treated within 18 days of the onset of paraplegia. During the experimental applications, all received the highest standard of conventional management, including surgical decompression, spinal stabilization (if required), and acute administration of methylprednisolone sodium succinate. A radiologic and neurologic examination was performed on every dog entering the study, the latter consisting of standard reflex testing, urologic tests, urodynamic testing, tests for deep and superficial pain appreciation, proprioceptive placing of the hind limbs, ambulation, and evoked potential testing. Dogs were evaluated before and after surgery and at 6 weeks and 6 months after surgery. A greater proportion of experimentally treated dogs than of sham-treated animals showed improvement in every category of functional evaluation at both the 6-week and 6-month recheck, with no reverse trend. Statistical significance was not reached in comparisons of some individual categories of functional evaluation between sham-treated and OFS-treated dogs (ambulation, proprioceptive placing); an early trend towards significance was shown in others (deep pain), and significance was reached in evaluations of superficial pain appreciation. An average of all individual scores for all categories of blinded behavioral evaluation (combined neurologic score) was used to compare group outcomes. At the 6-month recheck period, the combined neurologic score of OFS-treated dogs was significantly better than that of control dogs (p = 0.047; Mann-Whitney, two-tailed).
Background: Adult dogs with degenerative myelopathy (DM) have progressive ataxia and paresis of the pelvic limbs, leading to paraplegia and euthanasia. Although most commonly reported in German Shepherd dogs, high disease prevalence exists in other breeds.Objective: Our aim was the clinical and histopathologic characterization of familial degenerative myelopathy (FDM) in Pembroke Welsh Corgi (PWC) dogs.Animals: Twenty-one PWCs were prospectively studied from initial diagnosis until euthanasia. Methods: Neurologic examination, blood tests, cerebrospinal fluid (CSF) analysis, electrodiagnostic testing, and spinal imaging were performed. Concentrations of 8-iso-prostaglandin F 2 a (8-isoprostane) were measured in CSF. Routine histochemistry was used for neuropathology. Deoxyribonucleic acid and pedigrees were collected from 110 dogs.Results: Median duration of clinical signs before euthanasia was 19 months. Median age at euthanasia was 13 years. All dogs were nonambulatory paraparetic or paraplegic, and 15 dogs had thoracic limb weakness at euthanasia. Electrodiagnostic testing and spinal imaging were consistent with noncompressive myelopathy. No significant difference was detected in 8-isoprostane concentrations between normal and FDM-affected dogs. Axonal and myelin degeneration of the spinal cord was most severe in the dorsal portion of the lateral funiculus. Pedigree analysis suggested a familial disease.Conclusions and Clinical Importance: Clinical progression of FDM in PWC dogs was similar to that observed in other breeds but characterized by a longer duration. Spinal cord pathology predominates as noninflammatory axonal degeneration. Oxidative stress injury associated with 8-isoprostane production is not involved in the pathogenesis of FDM-affected PWC dogs. A familial disease is suspected.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.