Vibrational sum-frequency-generation (SFG) spectroscopy is capable of selectively detecting crystalline biopolymers interspersed in amorphous polymer matrices. However, the spectral interpretation is difficult due to the lack of knowledge on how spatial arrangements of crystalline segments influence SFG spectra features. Here we report time-dependent density functional theory (TD-DFT) calculations of cellulose crystallites in intimate contact with two different polarities: parallel versus antiparallel. TD-DFT calculations reveal that the CH/OH intensity ratio is very sensitive to the polarity of the crystallite packing. Theoretical calculations of hyperpolarizability tensors (β) clearly show the dependence of SFG intensities on the polarity of crystallite packing within the SFG coherence length, which provides the basis for interpretation of the empirically observed SFG features of native cellulose in biological systems.
We report first-principles simulations of the doubly resonance sum-frequency generation (DR-SFG) spectrum for rhodamine 6G (R6G). The simulations are done using a time-dependent formalism that includes both Franck-Condon (FC) and Herzberg-Teller (HT) terms in combination with time-dependent density functional theory (TDDFT) calculations. The simulated spectrum matches experiments, allowing a detailed assignment of the DR-SFG spectrum. Our work also shows that non-Condon effects are important and the DR-SFG spectrum of R6G is highly dependent on both FC and HT modes. This is surprising as R6G is known to be a strong FC resonant Raman scatterer. The simulations predict an orientation where the xanthene plane of R6G is perpendicular to the surface with binding through one of the ethyl amine groups. Our results show the importance of first-principles simulations for providing a detailed assignment of DR-SFG experiments, especially for large molecules where such an assignment is complicated due close-lying vibrational modes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.