Streptococcus salivarius 20P3 produces a 22-amino-acid residue lantibiotic, designated salivaricin A (SalA), that inhibits the growth of a range of streptococci, including all strains of Streptococcus pyogenes. Lantibiotic production is associated with the sal genetic locus comprising salA, the lantibiotic structural gene; salBCTX genes encoding peptide modification and export machinery proteins; and salYKR genes encoding a putative immunity protein and two-component sensor-regulator system. Insertional inactivation of salB in S. salivarius 20P3 resulted in abrogation of SalA peptide production, of immunity to SalA, and of salA transcription. Addition of exogenous SalA peptide to salB mutant cultures induced dose-dependent expression of salA mRNA (0.2 kb), demonstrating that SalA production was normally autoregulated. Inactivation of salR encoding the response regulator of the SalKR two-component system led to reduced production of, and immunity to, SalA. The sal genetic locus was also present in S. pyogenes SF370 (M type 1), but because of a deletion across the salBCT genes, the corresponding lantibiotic peptide, designated SalA1, was not produced. However, in S. pyogenes T11 (M type 4) the sal locus gene complement was apparently complete, and active SalA1 peptide was synthesized. Exogenously added SalA1 peptide from S. pyogenes T11 induced salA1 transcription in S. pyogenes SF370 and in an isogenic S. pyogenes T11 salB mutant and salA transcription in S. salivarius 20P3 salB. Thus, SalA and SalA1 are examples of streptococcal lantibiotics whose production is autoregulated. These peptides act as intra-and interspecies signaling molecules, modulating lantibiotic production and possibly influencing streptococcal population ecology in the oral cavity.
The prevalence of dental caries continues to increase, and novel strategies to reverse this trend appear necessary. The probiotic Streptococcus salivarius strain M18 offers the potential to confer oral health benefits as it produces bacteriocins targeting the important cariogenic species Streptococcus mutans, as well as the enzymes dextranase and urease, which could help reduce dental plaque accumulation and acidification, respectively. In a randomized double-blind, placebocontrolled study of 100 dental caries-active children, treatment with M18 was administered for 3 months and the participants were assessed for changes to their plaque score and gingival and soft-tissue health and to their salivary levels of S. salivarius, S. mutans, lactobacilli, b-haemolytic streptococci and Candida species. At treatment end, the plaque scores were significantly (P50.05) lower for children in the M18-treated group, especially in subjects having high initial plaque scores. The absence of any significant adverse events supported the safety of the probiotic treatment. Cell-culture analyses of sequential saliva samples showed no differences between the probiotic and placebo groups in counts of the specifically enumerated oral microorganisms, with the exception of the subgroup of the M18-treated children who appeared to have been colonized most effectively with M18. This subgroup exhibited reduced S. mutans counts, indicating that the anti-caries activity of M18 probiotic treatments may be enhanced if the efficiency of colonization is increased. It was concluded that S. salivarius M18 can provide oral health benefits when taken regularly.
Salivaricin A (SalA), the first Streptococcus salivarius lantibiotic to be characterized, appears to be inhibitory to most Streptococcus pyogenes strains. A variant of the SalA structural gene (salA1) is present in more than 90% of S. pyogenes strains, but only strains of M serotype 4 and T pattern 4 produce the biologically active peptide. The present study identifies four additional variants (salA2 to salA5) of the SalA structural gene and demonstrates that each of the corresponding inhibitory peptides (SalA2 to SalA5) is produced in vitro. These variants appear to be similar to SalA and SalA1 in their inhibitory activity against Micrococcus luteus and in their ability to act as inducers of SalA production. It had previously been shown that S. pyogenes strain SF370 had a deletion (of approximately 2.5 kb) in the salM and salT genes of the salA1 locus. In the present study, several additional characteristic deletions within the salA1 loci were identified. S. pyogenes strains of the same M serotype all share the same salA1 locus structure. Since S. salivarius is a predominant member of the normal oral flora of healthy humans, strains producing anti-S. pyogenes lantibiotics, such as SalA, may have excellent potential for use as oral probiotics. In the present study, we have used a highly specific SalA induction system to directly detect the presence of SalA in the saliva of humans who either naturally harbor populations of SalA-producing S. salivarius or who have been colonized with the SalA2-producing probiotic S. salivarius K12.
Members of the Gram-positive bacterial genus Streptococcus are a diverse collection of species inhabiting many body sites and range from benign, nonpathogenic species to those causing life-threatening infections. The streptococci are also prolific producers of bacteriocins, which are ribosomally synthesized proteinaceous antibiotics that kill or inhibit species closely related to the producer bacterium. With the emergence of bacterial resistance to conventional antibiotics, there is an impetus to discover, and implement, new and preferably 'natural' antibiotics to treat or prevent bacterial infections, a niche that bacterial interference therapy mediated by bacteriocins could easily fill. This review focuses on describing the diversity of bacteriocins produced by streptococci and also puts forth a case for Streptococcus salivarius, a nonpathogenic and numerically predominant oral species, as an ideal candidate for development as the model probiotic for the oral cavity. S. salivarius is a safe species that not only produces broad-spectrum bacteriocins but harbors bacteriocin-encoding (and bacteriocin-inducing) transmissible DNA entities (megaplasmids).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.