The structure of a ribonucleoprotein complex formed at the 5′‐end of poliovirus RNA was investigated. This complex involves the first 90 nucleotides of poliovirus genome which fold into a cloverleaf‐like structure and interact with both uncleaved 3CD, the viral protease‐polymerase precursor, and a 36 kDa ribosome‐associated cellular protein. The cellular protein is required for complex formation and interacts with unpaired bases in one stem‐loop of the cloverleaf RNA. Amino acids within the 3C protease which are important for RNA binding were identified by site‐directed mutagenesis and the crystal structure of a related protease was used to model the RNA binding domain within the viral 3CD protein. The physiologic importance of the ribonucleic‐protein complex is suggested by the finding that mutations that disrupt complex formation abolish RNA replication but do not affect RNA translation or stability. Based on these structural and functional findings we propose a model for the initiation of poliovirus RNA synthesis where an initiation complex consisting of 3CD, a cellular protein, and the 5′‐end of the positive strand RNA catalyzes in trans the initiation of synthesis of new positive stranded RNA.
This unit details the applications of one of the more common retroviral packaging systems, based on the highly transfectable 293T cell. The packaging system employs the use of the Phoenix cell lines. Calcium phosphate-mediated transfection is described for efficient introduction of retroviral vector plasmid DNA into the cells to generate high yields of virion-containing supernatant. An alternate protocol describes a method for transfecting retroviruses that contain a vesicular stomatitis virus G (VSV G) protein. Such virions are said to be "pseudotyped" with VSV G glycoprotein. Support protocols provide a simple method for concentrating VSV-G-pseudotyped retroviruses, as well as methods for culturing, cryopreserving, thawing, and drug selecting the Phoenix packaging cell lines. Finally, several methods for transfecting adherent or suspension cells with retroviruses are described.
As a step toward developing poliovirus as a vaccine vector, poliovirus recombinants were constructed by fusing exogenous peptides (up to 400 amino acids) and an artificial cleavage site for viral protease 3Cpro to the amino terminus of the viral polyprotein. Viral replication proceeded normally. An extended polyprotein was produced in infected cells and proteolytically processed into the complete array of viral proteins plus the foreign peptide, which was excluded from mature virions. The recombinants retained exogenous sequences through successive rounds of replication in culture and in vivo. Infection of animals with recombinants elicited a humoral immune response to the foreign peptides.
CD4+ T cells are important mediators in the pathogenesis of autoimmunity and would therefore provide ideal candidates for lymphocyte-based gene therapy. However, the number of Ag-specific T cells in any single lesion of autoimmunity may be quite low. Successful gene transfer into autoantigen-specific CD4+ T cells would serve as an ideal vehicle for site-targeted gene therapy if it were possible to transduce preferentially the small number of autoantigen-specific T cells. In this study we have demonstrated that retroviral infection of CD4+ lymphocytes from either autoantigen-stimulated TCR transgenic mice, or Ag-activated immunized nontransgenic mice, with a retroviral vector (pGCIRES), resulted in the transduction of only the limited number of Ag-reactive CD4+ T cells. In contrast, polyclonal activation of the same cultures resulted in transduction of non-antigen-specific lymphocytes. Transduction of Ag-reactive CD4+ T cells with pGCIRES retrovirus encoding the regulatory genes IL-4 (IL4) and soluble TNF receptor (STNFR) resulted in stable integration and long-term expression of recombinant gene products. Moreover, expression of the pGCIRES marker protein, GFP, directly correlated with the expression of the upstream regulatory gene. Retroviral transduction of CD4+ T cells targeted specifically Ag-reactive cells and was cell cycle-dependent and evident only during the mitosis phase. These studies suggest that retroviral transduction of autoantigen-specific murine CD4+ T cells, using the pGCIRES retroviral vector, may provide a potential method to target and isolate the low frequency of autoantigen-specific murine CD4+ T cells, and provides a rational approach to gene therapy in animal models of autoimmunity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.