Magnetic atoms coupled to the Cooper pairs of a superconductor induce Yu-Shiba-Rusinov states (in short Shiba states). In the presence of sufficiently strong spin-orbit coupling, the bands formed by hybridization of the Shiba states in ensembles of such atoms can support low-dimensional topological superconductivity with Majorana bound states localized on the ensembles’ edges. Yet, the role of spin-orbit coupling for the hybridization of Shiba states in dimers of magnetic atoms, the building blocks for such systems, is largely unexplored. Here, we reveal the evolution of hybridized multi-orbital Shiba states from a single Mn adatom to artificially constructed ferromagnetically and antiferromagnetically coupled Mn dimers placed on a Nb(110) surface. Upon dimer formation, the atomic Shiba orbitals split for both types of magnetic alignment. Our theoretical calculations attribute the unexpected splitting in antiferromagnetic dimers to spin-orbit coupling and broken inversion symmetry at the surface. Our observations point out the relevance of previously unconsidered factors on the formation of Shiba bands and their topological classification.
Isolated Majorana modes (MMs) are highly non-local quantum states with non-Abelian exchange statistics, which localize at the two ends of finite-size 1D topological superconductors of sufficient length. Experimental evidence for MMs is so far based on the detection of several key signatures: for example, a conductance peak pinned to the Fermi energy or an oscillatory peak splitting in short 1D systems when the MMs overlap. However, most of these key signatures were probed only on one of the ends of the 1D system, and firm evidence for an MM requires the simultaneous detection of all the key signatures on both ends. Here we construct short atomic spin chains on a superconductor—also known as Shiba chains—up to a chain length of 45 atoms using tip-assisted atom manipulation in scanning tunnelling microscopy experiments. We observe zero-energy conductance peaks localized at both ends of the chain that simultaneously split off from the Fermi energy in an oscillatory fashion after altering the chain length. By fitting the parameters of a low-energy model to the data, we find that the peaks are consistent with precursors of MMs that evolve into isolated MMs protected by an estimated topological gap of 50 μeV in chains of at least 35 nm length, corresponding to 70 atoms.
A scanning tunneling microscope (STM) with a magnetic tip that has a sufficiently strong spin polarization can be used to map the sample’s spin structure down to the atomic scale but usually lacks the possibility to absolutely determine the value of the sample’s spin polarization. Magnetic impurities in superconducting materials give rise to pairs of perfectly, i.e., 100%, spin-polarized subgap resonances. In this work, we functionalize the apex of a superconducting Nb STM tip with such impurity states by attaching Fe atoms to probe the spin polarization of atom-manipulated Mn nanomagnets on a Nb(110) surface. By comparison with spin-polarized STM measurements of the same nanomagnets using Cr bulk tips, we demonstrate an extraordinary spin sensitivity and the possibility to measure the sample’s spin-polarization values close to the Fermi level quantitatively with our new functionalized probes.
The experimental realization of large-scale, homogeneous semiconducting films with a single-layer thickness is of major importance for next-generation devices. Especially in view of the compatibility with state-of-the-art semiconductor technology, Si-based monolayer crystals are of particular interest. Here, the successful epitaxial growth of monolayer Si 2 Te 2 (MLSi 2 Te 2 ) films on semiconducting Sb 2 Te 3 thin film substrates is reported. High-quality (1 × 1) ML-Si 2 Te 2 films with a coverage as high as 95% are obtained as revealed by scanning tunneling microscopy. X-ray photoelectron spectroscopy confirms the existence of the SiTe bonds in the obtained films. By combining scanning tunneling spectroscopy with density functional theory calculations, the existence of a semiconducting bandgap is demonstrated on the order of 370 meV for the MLSi 2 Te 2 films which reside in an important mid-infrared spectral range. The results pave the way for practical applications of this novel artificial two-dimensional material.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.