Loose sand conducts compressional and surface (Rayleigh) waves at relatively low velocities (95 to 120 meters per second and 40 to 50 meters per second, respectively) compared to other natural substrates. For frequencies between 1 and 5 kilohertz, the specific attenuation factor, Q, for sand is 18. Compound slit sensilla on basitarsal leg segments of sand-dwelling scorpions respond to surface waves generated by movements of insects as far as 50 centimeters away, and tarsal sensory hairs respond to higher-frequency (mostly compressional-wave) components of the signal.
By behavioral and anatomical criteria, the pectinal sensory appendages of scorpions appear to be chemoreceptive organs specialized for detection of substances on substrates. These comb-like, midventral appendages contain tens of thousands of minute (< 5 microns), truncated setae, called pegs, arranged in dense, two-dimensional arrays on the ventral surface. In this study we used extracellular recording techniques to examine spontaneous and stimulated activity of sensory neurons within individual pegs. Chronic recordings lasting several days showed long-term fluctuations in spontaneous activity of sensory units in single peg sensilla, with peak activity coinciding with the animal's normal period of foraging. Several units were identified by the stereotypical waveforms of action potentials they elicit. Near-range olfactory stimulation of peg sensilla by volatile alcohols, aldehydes, ketones, esters, and carboxylic acids produced dose-dependent patterns of neural response. Contact stimulation with these chemicals, or water, or mechanical deflection of the peg tip also evoked activity in identifiable units. The peg sensilla appear to be broadly sensitive to odorants and tastants, suggesting they function similarly to the antennae of mandibulate arthropods.
1. The bag cells are a group of neuroendocrine cells located in the abdominal ganglion of Aplysia. Accumulated evidence suggests they synthesize and release egg-laying hormone (ELH), a peptide that induces egg laying. In this and the following paper (37) we describe five types of prolonged neural responses in cells of the isolated abdominal ganglion that are produced by stimulated bag cell activity. 2. Prolonged, 5- to 40-min bursts of spike activity were triggered in the normally silent bag cells by local stimulation of one of the bag cell clusters with brief, 0.6- to 2-strains of pulses. This local stimulation minimized the possible effects of the stimulus on other ganglion cells and initiated bag cell activity similar to what has been recorded in intact animals at the initiation of egg laying. 3. Following onset of triggered bag cell activity there is an increase in the amplitude of the bursting pacemaker potential in cell R15 that results in augmented bursting activity in this autoactive cell for up to 3 h. The increase begins in less than 1 min and reaches a maximim after 8--20 min. In two other bursting pacemaker cells, L3 and L6, there is a second type of response, slow inhibition, consisting of a smoothly graded hyperpolarization that begins in 5--14 s, reaches a peak value of 10--20 mV after 30 s, and results in a decrease in the spontaneous spike activity of these cells for 3 h or longer. Both types of responses are contingent on the occurrence of bag cell activity, they depend on prolonged bag cell activity for their normal expression, and they occur in the absence of the fast interactions characteristic of conventional synapses. 4. The results reveal at the level of intracellular recordings prolonged actions of peptide-secreting neuroendocrine cells on the central nervous system. The role of ELH as a putative mediator of one or more of these actions is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.