Furosemide, a loop diuretic, causes hepatic necrosis in mice. Previous evidence suggested hepatotoxicity arises from metabolic bioactivation to a chemically reactive metabolite that binds to hepatic proteins. To define the nature of the toxic metabolite, we examined the relationship between furosemide metabolism in CD-1 mice and Wistar rats. Furosemide (1.21 mmol/kg) was shown to cause toxicity in mice, but not rats, at 24 h, without resulting in glutathione depletion. In vivo covalent binding to hepatic protein was 6-fold higher in the mouse (1.57 Ϯ 0.98 nmol equivalent bound/mg protein) than rat (0.26 Ϯ 0.13 nmol equivalent bound/mg protein). In vivo covalent binding to mouse hepatic protein was reduced 14-fold by a predose of the cytochrome P450 (P450) inhibitor, 1-aminobenzotriazole (ABT; 0.11 Ϯ 0.04 nmol equivalent bound/mg protein), which also reduced hepatotoxicity. Administration of [ 14 C]furosemide to bile duct-cannulated rats demonstrated turnover to glutathione conjugate (8.8 Ϯ 2.8%), ␥-ketocarboxylic acid metabolite (22.1 Ϯ 3.3%), N-dealkylated metabolite (21.1 Ϯ 2.9%), and furosemide glucuronide (12.8 Ϯ 1.8%). Furosemide-glutathione conjugate was not observed in bile from mice dosed with [14 C]furosemide. The novel ␥-ketocarboxylic acid, identified by nuclear magnetic resonance spectroscopy, indicates bioactivation of the furan ring. Formation of ␥-ketocarboxylic acid was P450-dependent. In mouse liver microsomes, a ␥-ketoenal furosemide metabolite was trapped, forming an N-acetylcysteine/N-acetyl lysine furosemide adduct. Furosemide (1 mM, 6 h) became irreversibly bound to primary mouse and rat hepatocytes, 0.73 Ϯ 0.1 and 2.44 Ϯ 0.3 nmol equivalent bound/mg protein, respectively, which was significantly reduced in the presence of ABT, 0.11 Ϯ 0.03 and 0.21 Ϯ 0.1 nmol equivalent bound/mg protein, respectively. Furan rings are part of new chemical entities, and mechanisms underlying species differences in toxicity are important to understand to decrease the drug attrition rate.
Meprin is an intrinsic protein of the brush border, a specialized plasma membrane, of the mouse kidney. It is a metalloendopeptidase that contains 1 mol of zinc and 3 mol of calcium per mol of the 85,000-Mr subunit. The enzyme is isolated, and active, as a tetramer. The behaviour of the enzyme on SDS/polyacrylamide gels in the presence and absence of beta-mercaptoethanol indicates that the subunits are of the same Mr (approx. 85,000) and held together by intersubunit S--S bridges. Eight S-carboxymethyl-L-cysteine residues were detected after reduction of the enzyme with beta-mercaptoethanol and carboxymethylation with iodoacetate. The enzyme is a glycoprotein and contains approx. 18% carbohydrate. Most of the carbohydrate is removed by endoglycosidase F, indicating that the sugar residues are N-linked. The isoelectric point of the enzyme is between pH 4 and 5, and the purified protein yields a pattern of evenly spaced bands in this range on isoelectric focusing. The peptide-bond specificity of the enzyme has been determined by using the oxidized B-chain of insulin as substrate. In all, 15 peptide degradation products were separated by h.p.l.c. and analysed for their amino acid content and N-terminal amino acid residue. The prevalent peptide-bond cleavages were between Gly20 and Glu21, Phe24 and Phe25 and between Phe25 and Tyr26. Other sites of cleavage were Leu6-Cysteic acid7, Ala14-Leu15, His10-Leu11, Leu17-Val18, Gly8-Ser9, Leu15-Tyr16, His5-Leu6. These results indicate that meprin has a preference for peptide bonds that are flanked by hydrophobic or neutral amino acid residues, but hydrolysis is not limited to these bonds. The ability of meprin to hydrolyse peptide bonds between small neutral and negatively charged amino acid residues distinguishes it from several other metalloendopeptidases.
Precise control of the level of protein expression in cells can yield quantitative and temporal information on the role of a given gene in normal cellular physiology and on exposure to chemicals and drugs. This is particularly relevant to liver cells, in which the expression of many proteins, such as phase I and phase II drug-metabolizing enzymes, vary widely between species, among individual humans, and on exposure to xenobiotics. The most widely used gene regulatory system has been the tet-on/off approach. Although a second-generation tet-on transactivator was recently described, it has not been widely investigated for its potential as a tool for regulating genes in cells and particularly in cells previously recalcitrant to the first-generation tet-on approach, such as hepatocyte-derived cells. Here we demonstrate the development of two human (HepG2 and HuH7) and one mouse (Hepa1c1c7) hepatoma-derived cell lines incorporating a second-generation doxycycline-inducible gene expression system and the application of the human lines to control the expression of different transgenes. The two human cell lines were tested for transient or stable inducibility of five transgenes relevant to liver biology, namely phase I (cytochrome P-450 2E1; CYP2E1) and phase II (glutathione S-transferase P1; GSTP1) drug metabolism, and three transcription factors that respond to chemical stress [nuclear factor erythroid 2 p45-related factors (NRF)1 and 2 and NFKB1 subunit of NF-kappaB]. High levels of functional expression were obtained in a time- and dose-dependent manner. Importantly, doxycycline did not cause obvious changes in the cellular proteome. In conclusion, we have generated hepatocyte-derived cell lines in which expression of genes is fully controllable.
Metformin is a common co‐medication for many diseases and the victim of clinical drug‐drug interactions (DDIs) perpetrated by cimetidine, trimethoprim and pyrimethamine, resulting in decreased active renal clearance due to inhibition of organic cation transport proteins and increased plasma exposure of metformin. To understand whether area under the plasma concentration–time curve (AUC) increases relate to absorption, in vitro inhibitory potencies of these drugs against metformin transport by human organic cation transporter (OCT) 1, and the apical to basolateral absorptive permeability of metformin across Caco‐2 cells in the presence of therapeutic intestinal concentrations of cimetidine, trimethoprim or pyrimethamine, were determined. Whilst all inhibited OCT1, none enhanced metformin's absorptive permeability (~0.5 × 10−6 cm/sec) suggesting that DDI AUC changes are not related to absorption. Subsequently, to understand whether inhibition of renal transporters are responsible for AUC increases, in vitro inhibitory potencies against metformin transport by human OCT2, multidrug and toxin extrusion (MATE) 1 and MATE2‐K were determined. Ensuing IC 50 values were incorporated into mechanistic static equations, alongside unbound maximal plasma concentration and transporter fraction excreted values, in order to calculate theoretical increases in metformin AUC due to inhibition by cimetidine, trimethoprim or pyrimethamine. Calculated theoretical fold‐increases in metformin exposure confirmed solitary inhibition of renal MATE1 to be the likely mechanism underlying the observed exposure changes in clinical DDIs. Interestingly, clinically observed increases in metformin AUC were predicted more closely when the renal transporter fraction excreted value derived from oral metformin administration, rather than intravenous, was utilized in theoretical calculations, likely reflecting the “flip‐flop” pharmacokinetic profile of the drug.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.