A novel dual-microphone speech enhancement technique is proposed in the present paper. The technique utilizes the coherence between the target and noise signals as a criterion for noise reduction and can be generally applied to arrays with closely-spaced microphones, where noise captured by the sensors is highly correlated. The proposed algorithm is simple to implement and requires no estimation of noise statistics. In addition, it offers the capability of coping with multiple interfering sources that might be located at different azimuths. The proposed algorithm was evaluated with normal hearing listeners using intelligibility listening tests and compared against a well-established beamforming algorithm. Results indicated large gains in speech intelligibility relative to the baseline (front microphone) algorithm in both single and multiple-noise source scenarios. The proposed algorithm was found to yield substantially higher intelligibility than that obtained by the beamforming algorithm, particularly when multiple noise sources or competing talker(s) were present. Objective quality evaluation of the proposed algorithm also indicated significant quality improvement over that obtained by the beamforming algorithm. The intelligibility and quality benefits observed with the proposed coherence-based algorithm make it a viable candidate for hearing aid and cochlear implant devices.
The aim of this project was to determine for bimodal cochlear implant (CI) patients, i.e. patients with low-frequency hearing in the ear contralateral to the implant, how speech understanding varies as a function of the difference in level between the CI signal and the acoustic signal. The data suggest that (1) acoustic signals perceived as significantly softer than a CI signal can contribute to speech understanding in the bimodal condition, (2) acoustic signals that are slightly softer than, or balanced with, a CI signal provide the largest benefit to speech understanding, and (3) acoustic signals presented at maximum comfortable loudness levels provide nearly as much benefit as signals that have been balanced with a CI signal.
Approximate entropy (ApEn) is a statistic that quantifies regularity in time series data, and this parameter has several features that make it attractive for analyzing physiological systems. In this study, ApEn was used to detect nonlinearities in the heart rate (HR) patterns of 12 low-risk human fetuses between 38 and 40 wk of gestation. The fetal cardiac electrical signal was sampled at a rate of 1,024 Hz by using Ag-AgCl electrodes positioned across the mother's abdomen, and fetal R waves were extracted by using adaptive signal processing techniques. To test for nonlinearity, ApEn for the original HR time series was compared with ApEn for three dynamic models: temporally uncorrelated noise, linearly correlated noise, and linearly correlated noise with nonlinear distortion. Each model had the same mean and SD in HR as the original time series, and one model also preserved the Fourier power spectrum. We estimated that noise accounted for 17.2-44.5% of the total between-fetus variance in ApEn. Nevertheless, ApEn for the original time series data still differed significantly from ApEn for the three dynamic models for both group comparisons and individual fetuses. We concluded that the HR time series, in low-risk human fetuses, could not be modeled as temporally uncorrelated noise, linearly correlated noise, or static filtering of linearly correlated noise.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.