The emission of biosonar pulses in horseshoe bats (family Rhinolophidae) differs from technical sonar in that it has dynamic features at the interface to the free field. When the horseshoe bats emit their biosonar pulses through the nostrils, the walls of a horn-shaped baffle (anterior leaf) are in motion while diffracting the outgoing ultrasonic wave packets. Here, biomimetic reproductions of the dynamic emission shapes of horseshoe bats have been studied for their ability to impose time-variant signatures onto the outgoing pulses. It was found that an elliptical sound outlet with rotating baffles that were attached along the direction of the major axis can be well suited for this purpose. Most importantly, concave baffle shapes were found to produce strongly time-dependent devices characteristics that could reach a root-mean-square-difference between beampatterns of almost 6 dB within a rotation angle of 10°. In contrast to this, a straight baffle shape needs to be rotated over 60° for a similar result. When continuously rotated in synchrony with the emitted pulses, the concave biomimetic baffles produced time-variant device characteristics that depended jointly on direction, frequency, and time. Since such device properties are so easily produced, it appears well worthwhile to explore their use in engineering.
Unlike the beampatterns of technical acoustical systems, the biosonar beampatterns of bats are highly variable in the shapes of their main-and sidelobes over frequency. Some of this variability could represent adaptations to different sensing tasks. In order to understand such possible adaptations, a quantitative method for the analysis of variability (e.g., principal component analysis) is needed. Since the orientation of biosonar beampatterns is highly variable in-vivo, e.g., due to ear/head movements, and not preserved in isolated noseleaf/ear samples, orientation is left out of the initial analysis. Instead, beampatterns should be aligned to characterize their orientation-independent features. For this purpose, a framework to characterize the beampattern alignment problem and perform the alignment has been drawn up. For each frequency, beampatterns are compared using a distance metric (e.g., a p-norm). By investigating the value of this distance metric over the space of all possible beampattern rotations, it is possible to gain insights into the alignment problem, e.g., with regard to the existence of multiple minima in the metric. This space can also be used to test alignment strategies across multiple frequencies, e.g., through a weighted sum of the respective distances.
A quantitative analysis of the interspecific variability in bat biosonar beampatterns has been carried out on 267 numerical predictions of emission and reception beampatterns from 98 different species. Since these beampatterns did not share a common orientation, an alignment was necessary to analyze the variability in the shape of the patterns. To achieve this, beampatterns were aligned using a pairwise optimization framework based on a rotation-dependent cost function. The sum of the p-norms between beam-gain functions across frequency served as a figure of merit. For a representative subset of the data, it was found that all pairwise beampattern alignments resulted in a unique global minimum. This minimum was found to be contained in a subset of all possible beampattern rotations that could be predicted by the overall beam orientation. Following alignment, the beampatterns were decomposed into principal components. The average beampattern consisted of a symmetric, positionally static single lobe that narrows and became progressively asymmetric with increasing frequency. The first three "eigenbeams" controlled the beam width of the beampattern across frequency while higher rank eigenbeams account for symmetry and lobe motion. Reception and emission beampatterns could be distinguished (85% correct classification) based on the first 14 eigenbeams.
The noseleaf and pinnae of horseshoe bats (Rhinolophus ferrumequinum) have both been shown to actively deform during biosonar operation. Since these baffle structures directly affect the properties of the animals biosonar system, this work mimics horseshoe bat sonar system with the goal of developing a platform to study the dynamic sensing principles horseshoe bats employ. Consequently, two robotic devices were developed to mimic the dynamic emission and reception characteristics of horseshoe bats. The noseleaf and pinnae shapes were modeled as smooth blanks matched to digital representations of a horseshoe bat specimens noseleaf and pinnae. Local shape features mimicking structures on the pinnae and noseleaf were added digitally. Flexible baffles with local shape feature combinations were manufactured and paired with actuation mechanisms to mimic pinnae and noseleaf deformations in vivo. Two noseleaves with and without local shape features were considered. Each noseleaf baffle was mounted to a platform called the dynamic emission head to actuate three surface elements of the baffle. Similarly, 12 pinna realizations composed of combinations of three local shape features were mounted to a platform called the dynamic reception head to deform the left and right pinnae independently. Motion of the noseleaf and pinnae were synchronized to the incoming and outgoing sonar waveform, and the joint time-frequency properties of the noseleaf and pinnae local feature combinations and pairs of pinnae and noseleaf thereof were characterized across spatial direction. Amplitude modulations to the outgoing and incoming sonar pulse information across spatial direction were observed for all pinnae and noseleaf local shape feature combinations. Peak modulation variance generated by motion of the pinnae and combinations of the noseleaf and pinnae approached a white Gaussian noise variance bound. It was found the dynamic emitter generated less modulation than either the combined or reception scenarios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.