Abstract-The alternate arm converter (AAC) was one of the first modular converter topologies to feature dc-side fault ridethrough capability with only a small penalty in power efficiency. However, the simple alternation of its arm conduction periods (with an additional short overlap period) resulted in 1) substantial sixpulse ripples in the dc current waveform, 2) large dc-side filter requirements, and 3) limited operating area close to an energy sweet spot. This paper presents a new mode of operation called extended overlap (EO) based on the extension of the overlap period to 60• , which facilitates a fundamental redefinition of the working principles of the AAC. The EO-AAC has its dc current path decoupled from the ac current paths, a fact allowing 1) smooth dc current waveforms, 2) elimination of dc filters, and 3) restriction lifting on the feasible operating point. Analysis of this new mode and EO-AAC design criteria are presented and subsequently verified with tests on an experimental prototype. Finally, a comparison with other modular converters demonstrates that the EO-AAC is at least as power efficient as a hybrid modular multilevel converter (MMC) (i.e., a dc fault ride-through-capable MMC), while offering a smaller converter footprint because of a reduced requirement for energy storage in the submodules and a reduced inductor volume.Index Terms-AC-DC power conversion, active filters, capacitive energy storage, HVDC transmission, power system faults, power transmission protection.
Operation of HVDC converters under HVDC pole voltage imbalances is analysed. Asymmetrical HVDC pole current injection is achieved by directing current to the ground return path through a device installed in the AC side of the converter. Several operation modes, including asymmetric monopole, are presented and their sizing requirements are discussed.
The Hybrid MMC, comprising a mixture of full-bridge and half-bridge sub-modules, provides tolerance to DC faults without compromising the efficiency of the converter to a large extent. The inclusion of full-bridges creates a new freedom over the choice of ratio of AC to DC voltage at which the converter is operated, with resulting impact on the converter's internal voltage, current and energy deviation waveforms, all of which impact the design of the converter. A design method accounting for this, and allowing the required level of de-rating of nominal sub-module voltage and up-rating of stack voltage capability to ensure correct operation at the extremes of the operating envelope is presented. A mechanism is identified for balancing the peak voltage that the full-bridge and half-bridge sub-modules experience over a cycle. Comparisons are made between converters designed to block DC side faults and converters that also add STATCOM capability. Results indicate that operating at a modulation index of 1.2 gives a good compromise between reduced power losses and additional required sub-modules and semiconductor devices in the converter. The design method is verified against simulation results and the operation of the converter at the proposed modulation index is demonstrated at laboratory-scale.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.