Summary 1.Describing distribution and abundance is requisite to exploring interactions between organisms and their environment. Recently, the resource selection function (RSF) has emerged to replace many of the statistical procedures used to quantify resource selection by animals. 2. A RSF is defined by characteristics measured on resource units such that its value for a unit is proportional to the probability of that unit being used by an organism. It is solved using a variety of techniques, particularly the binomial generalized linear model. 3. Observing dynamics in a RSF -obtaining substantially different functions at different times or places for the same species -alerts us to the varying ecological processes that underlie resource selection. 4. We believe that there is a need for us to reacquaint ourselves with ecological theory when interpreting RSF models. We outline a suite of factors likely to govern ecologically based variation in a RSF. In particular, we draw attention to competition and density-dependent habitat selection, the role of predation, longitudinal changes in resource availability and functional responses in resource use. 5. How best to incorporate governing factors in a RSF is currently in a state of development; however, we see promise in the inclusion of random as well as fixed effects in resource selection models, and matched case-control logistic regression. 6. Investigating the basis of ecological dynamics in a RSF will allow us to develop more robust models when applied to forecasting the spatial distribution of animals. It may also further our understanding of the relative importance of ecological interactions on the distribution and abundance of species.
Individuals are predicted to maximize lifetime reproductive success (LRS) through selective use of resources; however, a wide range of ecological and social processes may prevent individuals from always using the highest-quality resources available. Resource selection functions (RSFs) estimate the relative amount of time an individual spends using a resource as a function of the proportional availability of that resource. We quantified the association between LRS and coefficients of individual-based RSFs describing lifetime resource selection for 267 female red deer (Cervus elaphus) of the Isle of Rum, Scotland, from 1970 to 2001. LRS was significantly related to first-and second-order effects of selection for Agrostis/Festuca grassland and proximity to the sea coast (quality of forage within Agrostis/Festuca grassland was highest nearest the coast (ratio of short : long grassland)). The benefits of selecting for quality in Agrostis/Festuca grassland, however, traded-off with increases in LRS gained by avoiding conspecific density. LRS was inversely associated with local density, which was highest along the coast, and reproductive benefits of selecting Agrostis/Festuca grassland diminished with increasing density. We discuss the relevance of these results to our understanding of the spatial distribution of red deer abundance, and potential applications of our approach to evolutionary and applied ecology.
Climate warming is predicted to reduce the extent of ice cover in the Arctic and, within the Hudson Bay region, the annual ice may be significantly decreased or entirely lost in the foreseeable future. The ringed seal (Phoca hispida), a key species that depends on sea ice, will likely be among the first marine mammals to show the negative effects of climatic warming. We used 639 ringed seals killed by Inuit hunters from western Hudson Bay (1991–1992, 1999–2001) to assess trends in recruitment relative to snow depth, snowfall, rainfall, temperature in April and May, North Atlantic Oscillation (NAO) from the previous winter, and timing of spring break‐up. Snowfall and ringed seal recruitment varied from lower than average in the 1970s, to higher in 1980s and lower in 1990s. Prior to 1990, seal recruitment appeared to be related to timing of spring ice break‐up which was correlated with the NAO. However, recent 1990–2001 environmental data indicate less snowfall, lower snow depth, and warmer temperatures in April and May when pups are born and nursed. Decreased snow depth, particularly below 32 cm, corresponded with a significant decrease in ringed seal recruitment as indicated by pups born and surviving to adults that were later harvested. Earlier spring break‐up of sea ice together with snow trends suggest continued low pup survival in western Hudson Bay.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.