Changes in AMPK activity are involved in the responses of glucose-inhibited neurons to large fluctuations in glucose concentration, and possibly also to leptin. This mechanism may contribute to the acute reduction of electrical activity and Ca(2+) oscillation frequency in these, but not other neurons, in the basomedial hypothalamus.
A fuller understanding of the central mechanisms involved in controlling food intake and metabolism is likely to be crucial for developing treatments to combat the growing problem of obesity in Westernised societies. Within the hypothalamus, specialized neurones respond to both appetite-regulating hormones and circulating metabolites to regulate feeding behaviour accordingly. Thus, the activity of hypothalamic glucose-excited and glucose-inhibited neurones is increased or decreased, respectively, by an increase in local glucose concentration. These 'glucosesensing' neurones may therefore play a key role in the central regulation of food intake and potentially in the regulation of blood glucose concentrations. Whilst the intracellular signalling mechanisms through which glucose-sensing neurones detect changes in the concentration of the sugar have been investigated quite extensively, many elements remain poorly understood. Furthermore, the similarities, or otherwise, with other nutrient-sensing cells, including pancreatic islet cells, are not completely resolved. In this review, we discuss recent advances in this field and explore the potential involvement of AMP-activated protein kinase and other nutrient-regulated protein kinases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.