[1] New, definitive measures of precipitation frequency provided by CloudSat are used to assess the realism of global model precipitation. The character of liquid precipitation (defined as a combination of accumulation, frequency, and intensity) over the global oceans is significantly different from the character of liquid precipitation produced by global weather and climate models. Five different models are used in this comparison representing state-of-the-art weather prediction models, state-of-the-art climate models, and the emerging high-resolution global cloud "resolving" models. The differences between observed and modeled precipitation are larger than can be explained by observational retrieval errors or by the inherent sampling differences between observations and models. We show that the time integrated accumulations of precipitation produced by models closely match observations when globally composited. However, these models produce precipitation approximately twice as often as that observed and make rainfall far too lightly. This finding reinforces similar findings from other studies based on surface accumulated rainfall measurements. The implications of this dreary state of model depiction of the real world are discussed.
Cirrus clouds play an important yet poorly determined role in the earth’s climate system and its various feedback mechanisms. As such, a significant amount of work has been accomplished both in understanding the physics of the ice clouds and in using this knowledge to estimate global distributions of ice cloud properties from satellite-based instruments. This work seeks to build on these past efforts by offering a reexamination of the ice cloud retrieval problem in context of recent advancements in the understanding of optical properties for a variety of realistic ice crystal shapes. In this work, the formal information content analysis outlined in Part I is used to objectively select the optimal combination of measurements for an ice cloud microphysical property retrieval scheme given a realistic assessment of the uncertainties that govern the ice cloud retrieval problem. Although this analysis is for a theoretical retrieval combining simulated measurements from the Moderate Resolution Imaging Spectroradiometer (MODIS) with the CloudSat Cloud Profiling Radar (CPR) above an ocean surface, the general methodology is applicable to any instrument package. Channel selection via information content is determined through a realistic characterization of not only the sensitivity of top-of-the-atmosphere radiances to desired retrieval parameters but also to the uncertainties resulting from both the measurements themselves and from the forward model assumptions used in relating observational and retrieval space. Results suggest that the channels that maximize retrieval information are strongly dependent upon the state of the atmosphere, meaning that no combination of two or three channels will always ensure an accurate retrieval. Because of the complexities of this state-dependent nature and the need for a consistent retrieval scheme for an operational retrieval, a five-channel retrieval approach consisting of a combination of error-weighted visible, near-infrared, and infrared channels is suggested. Such an approach ensures high information content regardless of cloud and atmospheric properties through use of the inherent sensitivities in each of these spectral regions.
h i g h l i g h t s < Multi-year, international efforts for studying aerosol and climate impacts across Southeast Asia. < Aerosol and cloud properties measured from both ground-and satellite-based platforms. < Investigation of aerosolecloud interactions and planning for future experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.