We observed bacterial or fungal co-infections in COVID-19 patients admitted between March 1 – April 18, 2020 (152/4267, 3.6%). Mortality was 57%; 74% were intubated; 51% with bacteremia had central venous catheters. Time to culture positivity was 6-7 days; 79% received preceding antibiotics. Metallo-beta-lactamase-producing E. cloacae co-infections occurred in 5 patients.
Staphylococcal enterotoxins (SE) can cause toxin-mediated disease, and those that function as superantigens are implicated in the pathogenesis of allergic diseases. The prevalence of 19 enterotoxin genes was determined by PCR in clinical S. aureus strains derived from wounds (108) and blood (99). We performed spa typing and multilocus sequence typing (MLST) to determine clonal origin, and for selected strains staphylococcal enterotoxin B (SEB) production was measured by enzyme-linked immunosorbent assay. Strains carried a median of five SE genes. For most SE genes, the prevalence rates among methicillinresistant and methicillin-sensitive S. aureus isolates, as well as wound-and blood-derived isolates, did not differ. At least one SE gene was detected in all except two S. aureus isolates (>99%). Complete egc clusters were found in only 11% of S. aureus isolates, whereas the combination of sed, sej, and ser was detected in 24% of clinical strains. S. aureus strains exhibited distinct combinations of SE genes, even if their pulsed-field gel electrophoresis and MLST patterns demonstrated clonality. USA300 strains also showed considerable variability in SE content, although they contained a lower number of SE genes (mean, 3). By contrast, SE content was unchanged in five pairs of serial isolates. SEB production by individual strains varied up to 200-fold, and even up to 15-fold in a pair of serial isolates. In conclusion, our results illustrate the genetic diversity of S. aureus strains with respect to enterotoxin genes and suggest that horizontal transfer of mobile genetic elements encoding virulence genes occurs frequently.As a commensal, Staphylococcus aureus colonizes the nasal mucosa of 20 to 40% of humans (54), and as a pathogen it causes pyogenic diseases and toxin-mediated diseases (38). S. aureus produces many different virulence factors, including enterotoxins (SEs), which can cause defined toxic shock syndromes (4). The characterization of some of these toxins led to the discovery of superantigens (41), which bind to major histocompatibility complex class II molecules and V chains of T-cell receptors, resulting in the activation of large numbers of T cells (20 to 30%) and massive cytokine production (10, 18). These superantigen-induced "cytokine storms" are responsible for the toxic effects seen in staphylococcal entertoxin B (SEB)-and toxic shock syndrome toxin (TSST)-associated shock syndromes in S. aureus infections (13, 40, 47). To date, 19 SEs have been identified based on sequence homologies, and studies have reported enterotoxin genes in up to 80% of all S. aureus strains (4, 21). Although many new enterotoxins have been identified, i.e., seg ser and seu (33,37,44,49), their precise functions have not been characterized yet. The majority of experimental work with SEs is still done with SEB, toxic shock syndrome toxin 1, and SEA (27, 31), because these toxins are commercially available. Most SEs are located on mobile elements in bacterial genomes such as plasmids or pathogenicity islands and can thu...
Biofilm formation (BF) in the setting of candiduria has not been well studied. We determined BF and MIC to antifungals in Candida spp. isolates grown from urine samples of patients and performed a retrospective chart review to examine the correlation with risk factors. A total of 67 Candida spp. isolates were grown from urine samples from 55 patients. The species distribution was C. albicans (54%), C. glabrata (36%), and C. tropicalis (10%). BF varied greatly among individual Candida isolates but was stable in sequential isolates during chronic infection. BF also depended on the growth medium and especially in C. albicans was significantly enhanced in artificial urine (AU) compared to RPMI medium. In nine of the C. albicans strains BF was 4-to 10-fold higher in AU, whereas in three of the C. albicans strains and two of the C. glabrata strains higher BF was measured in RPMI medium than in AU. Determination of the MICs showed that planktonic cells of all strains were susceptible to amphotericin B (AMB) and caspofungin (CASPO) and that three of the C. glabrata strains and two of the C. albicans strains were resistant to fluconazole (FLU). In contrast, all biofilm-associated adherent cells were resistant to CASPO and FLU. The biofilms of 14 strains (28%) were sensitive to AMB (MIC 50 of <1 g/ml). Correlation between degree of BF and MIC of AMB was not seen in RPMI grown biofilms but was present when grown in AU. A retrospective chart review demonstrated no correlation of known risk factors of candiduria with BF in AU or RPMI. We conclude that BF is a stable characteristic of Candida strains that varies greatly among clinical strains and is dependent on the growth medium. Resistance to AMB is associated with higher BF in AU, which may represent the more physiologic medium to test BF. Future studies should address whether in vitro BF can predict treatment failure in vivo.
(2011) Susceptibility of Gram-positive and -negative bacteria to novel nitric oxide-releasing nanoparticle technology, Virulence, 2:3, 217-221,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.