Endothelial dysfunction has been implicated as a key factor in the development of a wide range of cardiovascular diseases, but its definition and mechanisms vary greatly between different disease processes. This review combines evidence from cell-culture experiments, in vitro and in vivo animal models, and clinical studies to identify the variety of mechanisms involved in endothelial dysfunction in its broadest sense. Several prominent disease states, including hypertension, heart failure, and atherosclerosis, are used to illustrate the different manifestations of endothelial dysfunction and to establish its clinical implications in the context of the range of mechanisms involved in its development. The size of the literature relating to this subject precludes a comprehensive survey; this review aims to cover the key elements of endothelial dysfunction in cardiovascular disease and to highlight the importance of the process across many different conditions.
The thyroid and parathyroid glands are dually innervated by sympathetic (cervical sympathetic trunk [CST]) and parasympathetic (superior laryngeal nerve [SLN]) nerve fibers. We examined the effects of electrical stimulation of efferent or afferent nerve fibers innervating the thyroid and parathyroid glands on the secretion of immunoreactive calcitonin (iCT), parathyroid hormone (iPTH), 3,3′,5-triiodothyronine (iT3), and thyroxine (iT4) from the thyroid and parathyroid glands. In anesthetized and artificially ventilated rats, thyroid venous blood was collected. The rate of hormone secretion from the glands was calculated from plasma hormone levels, measured by ELISA, and the flow rate of thyroid venous plasma. SLNs or CSTs were stimulated bilaterally with rectangular pulses with a 0.5-ms width. To define the role of unmyelinated nerve fibers (typically efferent), the cut peripheral segments were stimulated at various frequencies (up to 40 Hz) with a supramaximal intensity to excite all nerve fibers. The secretion of iCT, iT3, and iT4 increased during SLN stimulation and decreased during CST stimulation. iPTH secretion increased during CST stimulation, but was not affected by SLN stimulation. To examine the effects of selective stimulation of myelinated nerve fibers (typically afferent) in the SLN, intact SLNs were stimulated with a subthreshold intensity for unmyelinated nerve fibers. iCT, iT3, and iT4 secretion increased during stimulation of intact SLNs at 40 Hz. These results suggest that excitation of myelinated afferents induced by low intensity and high frequency stimulation of intact SLNs promotes secretion of CT and thyroid hormones from the thyroid gland, potentially via reflex activation of parasympathetic efferent nerve fibers in the SLN.
Reduced NO levels due to the deficiency of tetrahydrobiopterin (BH(4)) contribute to impaired vasodilation in pulmonary hypertension. Due to the chemically unstable nature of BH(4), it was hypothesised that oxidatively stable analogues of BH(4) would be able to support NO synthesis to improve endothelial dysfunction in pulmonary hypertension. Two analogues of BH(4), namely 6-hydroxymethyl pterin (HMP) and 6-acetyl-7,7-dimethyl-7,8-dihydropterin (ADDP), were evaluated for vasodilator activity on precontracted rat pulmonary artery rings. ADDP was administered to pulmonary hypertensive rats, followed by measurement of pulmonary vascular resistance in perfused lungs and eNOS expression by immunohistochemistry. ADDP and HMP caused significant relaxation in vitro in rat pulmonary arteries depleted of BH(4) with a maximum relaxation at 0.3μM (both P<0.05). Vasodilator activity of ADDP and HMP was completely abolished following preincubation with the NO synthase inhibitor, L-NAME. ADDP and HMP did not alter relaxation induced by carbachol or spermine NONOate. BH(4) itself did not produce relaxation. In rats receiving ADDP 14.1mg/kg/day, pulmonary vasodilation induced by calcium ionophore A23187 was augmented and eNOS immunoreactivity was increased. In conclusion, ADDP and HMP are two analogues of BH(4), which can act as oxidatively stable alternatives to BH(4) in causing NO-mediated vasorelaxation. Chronic treatment with ADDP resulted in improvement of NO-mediated pulmonary artery dilation and enhanced expression of eNOS in the pulmonary vascular endothelium. Chemically stable analogues of BH(4) may be able to limit endothelial dysfunction in the pulmonary vasculature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.