Dissipation of heat can be a major challenge when applying sensor systems outdoors under varying environmental conditions. Typically, complex software and knowledge is needed to optimize thermal management. In this paper it is shown how the thermal optimization of a LiDAR (light detection and ranging) sensor can be performed efficiently. This approach uses standard CAD (computer aided design) software, which is readily available, and saves time and cost as the thermal design can be optimized before experimental realisation. A four-step process was developed and realized: (i) Measurement of the thermal energy distribution of the current sensor design; (ii) Simulation of the time-dependant thermal behaviour using standard CAD software; (iii) Simulation of a thermally optimized design. This was compared quantitatively with the original design and was also used for verification of sufficient increase in heat dissipation; (iv) Experimental realisation and verification of the optimized design. It could be shown that the optimized prototype shows significantly improved thermal behaviour in accordance with the predictions from the simulations. The new LiDAR sensor shows lower heat generation and optimized dissipation of thermal energy which proofs the applicability of the approach to complex sensors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.