Maintenance of biological functions under negative energy balance depends on mobilization of storage lipids and carbohydrates in animals. In mammals, glucagon and glucocorticoid signaling mobilizes energy reserves, whereas adipokinetic hormones (AKHs) play a homologous role in insects. Numerous studies based on AKH injections and correlative studies in a broad range of insect species established the view that AKH acts as master regulator of energy mobilization during development, reproduction, and stress. In contrast to AKH, the second peptide, which is processed from the Akh encoded prohormone [termed "adipokinetic hormone precursor-related peptide" (APRP)] is functionally orphan. APRP is discussed as ecdysiotropic hormone or as scaffold peptide during AKH prohormone processing. However, as in the case of AKH, final evidence for APRP functions requires genetic mutant analysis. Here we employed CRISPR/Cas9-mediated genome engineering to create AKH and AKH plus APRP-specific mutants in the model insect Drosophila melanogaster. Lack of APRP did not affect any of the tested steroid-dependent processes. Similarly, Drosophila AKH signaling is dispensable for ontogenesis, locomotion, oogenesis, and homeostasis of lipid or carbohydrate storage until up to the end of metamorphosis. During adulthood, however, AKH regulates body fat content and the hemolymph sugar level as well as nutritional and oxidative stress responses. Finally, we provide evidence for a negative autoregulatory loop in Akh gene regulation.KEYWORDS Drosophila; adipokinetic hormone; adipokinetic hormone precursor-related peptide; energy homeostasis; stress resistance E NERGY homeostasis requires continuous compensation for fluctuations in the energy expenditure and availability of food resources. Organisms thus build up reserves under positive energy balance and catabolize them when the balance turns negative to retain stable levels of circulating energy fuel. Insulin signaling induces the uptake of excessive circulating sugars, thus promoting reserve accumulation (reviewed, e.g., in Saltiel and Kahn 2001; Cohen 2006), whereas energy mobilization is under the control of glucagon and glucocorticoid signaling in mammals (reviewed, e.g., in Rui 2014;Charron and Vuguin 2015) and adipokinetic hormone (AKH) signaling in insects (reviewed, e.g., in Van der Horst 2003;Lorenz and Gäde 2009;Bednářová et al. 2013a). Consistent with their fundamental physiological function in energy mobilization, AKHs are found not only in insects, but are common in Protostomia, where they have been identified both in Ecdyszoa (in Arthropoda, Tardigrada, and Priapulida) and Lophotrochozoa (in Mollusca, Rotifera, and Annelida) (Gäde 2009;Hauser and Grimmelikhuijzen 2014). Nevertheless, physiological functions of AKHs have been studied mainly in Arthropoda. Similar to mammals, also insects store lipids in the form of triacylglycerides (TGs) and as carbohydrates in the form of glycogen. The main storage organ for lipid and glycogen in insects is the fat body, which can thus b...
Adaptive mobilization of body fat is essential for energy homeostasis in animals. In insects, the adipokinetic hormone (Akh) systemically controls body fat mobilization. Biochemical evidence supports that Akh signals via a G protein-coupled receptor (GPCR) called Akh receptor (AkhR) using cyclic-AMP (cAMP) and Ca(2+) second messengers to induce storage lipid release from fat body cells. Recently, we provided genetic evidence that the intracellular calcium (iCa(2+)) level in fat storage cells controls adiposity in the fruit fly Drosophila melanogaster. However, little is known about the genes, which mediate Akh signalling downstream of the AkhR to regulate changes in iCa(2+). Here, we used thermogenetics to provide in vivo evidence that the GPCR signal transducers G protein α q subunit (Gαq), G protein γ1 (Gγ1) and Phospholipase C at 21C (Plc21C) control cellular and organismal fat storage in Drosophila. Transgenic modulation of Gαq, Gγ1 and Plc21C affected the iCa(2+) of fat body cells and the expression profile of the lipid metabolism effector genes midway and brummer, which results in severely obese or lean flies. Moreover, functional impairment of Gαq, Gγ1 and Plc21C antagonised Akh-induced fat depletion. This study characterizes Gαq, Gγ1 and Plc21C as anti-obesity genes and supports the model that Akh employs the Gαq/Gγ1/Plc21C module of iCa(2+) control to regulate lipid mobilization in adult Drosophila.
Carboxylesterases constitute a large enzyme family in insects, which is involved in diverse functions such as xenobiotic detoxification, lipid metabolism and reproduction. Phylogenetically, many insect carboxylesterases are represented by multienzyme clades, which are encoded by evolutionarily ancient gene clusters such as the α-Esterase cluster. Much in contrast to the vital importance attributed to carboxylesterases in general, the in vivo function of individual α-Esterase genes is largely unknown. This study employs a functional proteomics approach to identify esterolytic enzymes of the vinegar fly Drosophila melanogaster fat body. One of the fat body carboxylesterases, α-Esterase-7, was selected for mutational analysis by gene targeting to generate a deletion mutant fly. Phenotypic characterization of α-Esterase-7 null mutants and transgenic flies, which overexpress a chimeric α-Esterase-7:EGFP gene, reveals important functions of α-Esterase-7 in insecticide tolerance, lipid metabolism and lifespan control. The presented first deletion mutant of any α-Esterase in the model insect D. melanogaster generated by gene targeting not only provides experimental evidence for the endogenous functions of this gene family. It also offers an entry point for in vivo structure-function analyses of α-Esterase-7, which is of central importance for naturally occurring insecticide resistance in wild populations of various dipteran insect species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.