Dravet syndrome is a severe epilepsy syndrome characterized by infantile onset of therapy-resistant, fever-sensitive seizures followed by cognitive decline. Mutations in SCN1A explain about 75% of cases with Dravet syndrome; 90% of these mutations arise de novo. We studied a cohort of nine Dravet-syndrome-affected individuals without an SCN1A mutation (these included some atypical cases with onset at up to 2 years of age) by using whole-exome sequencing in proband-parent trios. In two individuals, we identified a de novo loss-of-function mutation in CHD2 (encoding chromodomain helicase DNA binding protein 2). A third CHD2 mutation was identified in an epileptic proband of a second (stage 2) cohort. All three individuals with a CHD2 mutation had intellectual disability and fever-sensitive generalized seizures, as well as prominent myoclonic seizures starting in the second year of life or later. To explore the functional relevance of CHD2 haploinsufficiency in an in vivo model system, we knocked down chd2 in zebrafish by using targeted morpholino antisense oligomers. chd2-knockdown larvae exhibited altered locomotor activity, and the epileptic nature of this seizure-like behavior was confirmed by field-potential recordings that revealed epileptiform discharges similar to seizures in affected persons. Both altered locomotor activity and epileptiform discharges were absent in appropriate control larvae. Our study provides evidence that de novo loss-of-function mutations in CHD2 are a cause of epileptic encephalopathy with generalized seizures.
This study shows that mutations in STXBP1 are not limited to patients with Ohtahara syndrome, but are also present in 10% (5/49) of patients with an early-onset epileptic encephalopathy that does not fit into either Ohtahara or West syndrome and rarely in typical West syndrome. STXBP1 mutational analysis should be considered in the diagnostic evaluation of this challenging group of patients.
Summary
Mutations in STXBP1 have been identified in a subset of patients with early onset epileptic encephalopathy (EE), but the full phenotypic spectrum remains to be delineated. Therefore, we screened a cohort of 160 patients with an unexplained EE, including patients with early myoclonic encephalopathy (EME), Ohtahara syndrome, West syndrome, nonsyndromic EE with onset in the first year, and Lennox‐Gastaut syndrome (LGS). We found six de novo mutations in six patients presenting as Ohtahara syndrome (2/6, 33%), West syndrome (1/65, 2%), and nonsyndromic early onset EE (3/64, 5%). No mutations were found in LGS or EME. Only two of four mutation carriers with neonatal seizures had Ohtahara syndrome. Epileptic spasms were present in five of six patients. One patient with normal magnetic resonance imaging (MRI) but focal seizures underwent epilepsy surgery and seizure frequency dropped drastically. Neuropathology showed a focal cortical dysplasia type 1a. There is a need for additional neuropathologic studies to explore whether STXBP1 mutations can lead to structural brain abnormalities.
BackgroundPrimary out-of-hours care is developing throughout Europe. High-quality databases with linked data from primary health services can help to improve research and future health services.MethodsIn 2014, a central clinical research database infrastructure was established (iCAREdata: Improving Care And Research Electronic Data Trust Antwerp, www.icaredata.eu) for primary and interdisciplinary health care at the University of Antwerp, linking data from General Practice Cooperatives, Emergency Departments and Pharmacies during out-of-hours care. Medical data are pseudonymised using the services of a Trusted Third Party, which encodes private information about patients and physicians before data is sent to iCAREdata.ResultsiCAREdata provides many new research opportunities in the fields of clinical epidemiology, health care management and quality of care. A key aspect will be to ensure the quality of data registration by all health care providers.ConclusionsThis article describes the establishment of a research database and the possibilities of linking data from different primary out-of-hours care providers, with the potential to help to improve research and the quality of health care services.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.