Macrocyclic peptides are attractive for chemoproteomic applications due to their modular synthesis and potential for high target selectivity. We describe a solid phase synthesis method for the efficient generation of libraries of small macrocycles that contain an electrophile and alkyne handle. The modular synthesis produces libraries that can be directly screened using simple SDS-PAGE readouts and then optimal lead molecules applied to proteomic analysis. We generated a library of 480 macrocyclic peptides containing the weakly reactive fluorosulfate (OSF) electrophile. Initial screening of a subset of the library containing each of the various diversity elements identified initial molecules of interest. The corresponding positional and confirmational isomers were then screened to select molecules that showed specific protein labeling patterns that were dependent on the probe structure. The most promising hits were applied to standard chemoproteomic workflows to identify protein targets. Our results demonstrate the feasibility of rapid, on-resin synthesis of diverse macrocyclic electrophiles to generate new classes of covalent ligands.
Serine hydrolases play important roles in signaling and human metabolism, yet little is known about the functions of these enzymes in gut commensal bacteria. Using bioinformatics and chemoproteomics, we identify serine hydrolases in the gut commensal Bacteroides thetaiotaomicron that are specific to the Bacteroidetes phylum. Two are predicted homologs of the human protease dipeptidyl peptidase 4 (hDPP4), a key enzyme that regulates insulin signaling. Functional studies reveal that BT4193 is a true homolog of hDPP4 while the other is misannotated and is a proline-specific triaminopeptidase. We demonstrate that BT4193 is important for envelope integrity and is inhibited by FDA-approved type 2 diabetes drugs that target hDPP4. Loss of BT4193 reduces B. thetaiotaomicron fitness during in vitro growth within a diverse community. Taken together, our findings suggest that serine hydrolases contribute to gut microbiota dynamics and may be off-targets for existing drugs that could cause unintended impact on the microbiota.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.