Purpose:To describe and demonstrate the feasibility of a novel multiecho reconstruction technique that achieves simultaneous water-fat decomposition and T2* estimation. The method removes interference of water-fat separation with iron-induced T2* effects and therefore has potential for the simultaneous characterization of hepatic steatosis (fatty infiltration) and iron overload. Materials and Methods:The algorithm called "T2*-IDEAL" is based on the IDEAL water-fat decomposition method. A novel "complex field map" construct is used to estimate both R2* (1/T2*) and local B 0 field inhomogeneities using an iterative least-squares estimation method. Water and fat are then decomposed from source images that are corrected for both T2* and B 0 field inhomogeneity. Results:It was found that a six-echo multiecho acquisition using the shortest possible echo times achieves an excellent balance of short scan and reliable R2* measurement. Phantom experiments demonstrate the feasibility with high accuracy in R2* measurement. Promising preliminary in vivo results are also shown. Conclusion:The T2*-IDEAL technique has potential applications in imaging of diffuse liver disease for evaluation of both hepatic steatosis and iron overload in a single breath-hold.
Reconstruction of magnetic resonance images from data not falling on a Cartesian grid is a Fourier inversion problem typically solved using convolution interpolation, also known as gridding. Gridding is simple and robust and has parameters, the grid oversampling ratio and the kernel width, that can be used to trade accuracy for computational memory and time reductions. We have found that significant reductions in computation memory and time can be obtained while maintaining high accuracy by using a minimal oversampling ratio, from 1.125 to 1.375, instead of the typically employed grid oversampling ratio of two. When using a minimal oversampling ratio, appropriate design of the convolution kernel is important for maintaining high accuracy. We derive a simple equation for choosing the optimal Kaiser-Bessel convolution kernel for a given oversampling ratio and kernel width. As well, we evaluate the effect of presampling the kernel, a common technique used to reduce the computation time, and find that using linear interpolation between samples adds negligible error with far less samples than is necessary with nearest-neighbor interpolation. We also develop a new method for choosing the optimal presampled kernel. Using a minimal oversampling ratio and presampled kernel, we are able to perform a three-dimensional (3-D) reconstruction in one-eighth the time and requiring one-third the computer memory versus using an oversampling ratio of two and a Kaiser-Bessel convolution kernel, while maintaining the same level of accuracy.
The class of autocalibrating "data-driven" parallel imaging (PI) methods has gained attention in recent years due to its ability to achieve high quality reconstructions even under challenging imaging conditions. The aim of this work was to perform a formal comparative study of various data-driven reconstruction techniques to evaluate their relative merits for certain imaging applications. A total of five different reconstruction methods are presented within a consistent theoretical framework and experimentally compared in terms of the specific measures of reconstruction accuracy and efficiency using one-dimensional (1D)-accelerated Cartesian datasets. It is shown that by treating the reconstruction process as two discrete phases, a calibration phase and a synthesis phase, the reconstruction pathway can be tailored to exploit the computational advantages available in certain data domains. A new "split-domain" reconstruction method is presented that performs the calibration phase in k-space (k x , k y ) and the synthesis phase in a hybrid (x, k y ) space, enabling highly accurate 2D neighborhood reconstructions to be performed more efficiently than previously possible with conventional techniques. This analysis may help guide the selection of PI methods for a given imaging task to achieve high reconstruction accuracy at minimal computational expense. Magn Reson Med 59:382-395, 2008.
Three-dimensional FSE XETA acquires high-resolution (approximately 0.7 mm) isotropic data with intermediate and T2-weighting that may be reformatted in arbitrary planes. Three-dimensional FSE XETA is a promising technique for MRI of the knee.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.