With thousands of learners watching the same online lecture videos, analyzing video watching patterns provides a unique opportunity to understand how students learn with videos. This paper reports a large-scale analysis of in-video dropout and peaks in viewership and student activity, using second-by-second user interaction data from 862 videos in four Massive Open Online Courses (MOOCs) on edX. We find higher dropout rates in longer videos, re-watching sessions (vs first-time), and tutorials (vs lectures). Peaks in re-watching sessions and play events indicate points of interest and confusion. Results show that tutorials (vs lectures) and re-watching sessions (vs first-time) lead to more frequent and sharper peaks. In attempting to reason why peaks occur by sampling 80 videos, we observe that 61% of the peaks accompany visual transitions in the video, e.g., a slide view to a classroom view. Based on this observation, we identify five student activity patterns that can explain peaks: starting from the beginning of a new material, returning to missed content, following a tutorial step, replaying a brief segment, and repeating a non-visual explanation. Our analysis has design implications for video authoring, editing, and interface design , providing a richer understanding of video learning on MOOCs.
Daikon is an implementation of dynamic detection of likely invariants; that is, the Daikon invariant detector reports likely program invariants. An invariant is a property that holds at a certain point or points in a program; these are often used in assert statements, documentation, and formal specifications. Examples include being constant (x = a), non-zero (x = 0), being in a range (a ≤ x ≤ b), linear relationships (y = ax + b), ordering (x ≤ y), functions from a library (x = fn(y)), containment (x ∈ y), sortedness (x is sorted), and many more. Users can extend Daikon to check for additional invariants.Dynamic invariant detection runs a program, observes the values that the program computes, and then reports properties that were true over the observed executions. Dynamic invariant detection is a machine learning technique that can be applied to arbitrary data. Daikon can detect invariants in C, C + +, Java, and Perl programs, and in record-structured data sources; it is easy to extend Daikon to other applications.Invariants can be useful in program understanding and a host of other applications. Daikon's output has been used for generating test cases, predicting incompatibilities in component integration, automating theorem proving, repairing inconsistent data structures, and checking the validity of data streams, among other tasks.Daikon is freely available in source and binary form, along with extensive documentation, at
With thousands of learners watching the same online lecture videos, analyzing video watching patterns provides a unique opportunity to understand how students learn with videos. This paper reports a large-scale analysis of in-video dropout and peaks in viewership and student activity, using second-by-second user interaction data from 862 videos in four Massive Open Online Courses (MOOCs) on edX. We find higher dropout rates in longer videos, re-watching sessions (vs first-time), and tutorials (vs lectures). Peaks in rewatching sessions and play events indicate points of interest and confusion. Results show that tutorials (vs lectures) and re-watching sessions (vs first-time) lead to more frequent and sharper peaks. In attempting to reason why peaks occur by sampling 80 videos, we observe that 61% of the peaks accompany visual transitions in the video, e.g., a slide view to a classroom view. Based on this observation, we identify five student activity patterns that can explain peaks: starting from the beginning of a new material, returning to missed content, following a tutorial step, replaying a brief segment, and repeating a non-visual explanation. Our analysis has design implications for video authoring, editing, and interface design, providing a richer understanding of video learning on MOOCs.
We present a technique for finding security vulnerabilities in Web applications. SQL Injection (SQLI) and crosssite scripting (XSS) attacks are widespread forms of attack in which the attacker crafts the input to the application to access or modify user data and execute malicious code. In the most serious attacks (called second-order, or persistent, XSS), an attacker can corrupt a database so as to cause subsequent users to execute malicious code.This paper presents an automatic technique for creating inputs that expose SQLI and XSS vulnerabilities. The technique generates sample inputs, symbolically tracks taints through execution (including through database accesses), and mutates the inputs to produce concrete exploits. Ours is the first analysis of which we are aware that precisely addresses second-order XSS attacks.Our technique creates real attack vectors, has few false positives, incurs no runtime overhead for the deployed application, works without requiring modification of application code, and handles dynamic programming-language constructs. We implemented the technique for PHP, in a tool A. We evaluated A on five PHP applications and found 68 previously unknown vulnerabilities (23 SQLI, 33 first-order XSS, and 12 second-order XSS).
The current generation of Massive Open Online Courses (MOOCs) attract a diverse student audience from all age groups and over 196 countries around the world. Researchers, educators, and the general public have recently become interested in how the learning experience in MOOCs differs from that in traditional courses. A major component of the learning experience is how students navigate through course content.This paper presents an empirical study of how students navigate through MOOCs, and is, to our knowledge, the first to investigate how navigation strategies differ by demographics such as age and country of origin. We performed data analysis on the activities of 140,546 students in four edX MOOCs and found that certificate earners skip on average 22% of the course content, that they frequently employ non-linear navigation by jumping backward to earlier lecture sequences, and that older students and those from countries with lower student-teacher ratios are more comprehensive and non-linear when navigating through the course.From these findings, we suggest design recommendations such as for MOOC platforms to develop more detailed forms of certification that incentivize students to deeply engage with the content rather than just doing the minimum necessary to earn a passing grade.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.