The existence of multipotent progenitor populations in the adult forebrain has been widely studied. To extend this knowledge to the adult spinal cord we have examined the proliferation, distribution, and phenotypic fate of dividing cells in the adult rat spinal cord. Bromodeoxyuridine (BrdU) was used to label dividing cells in 13- to 14-week-old, intact Fischer rats. Single daily injections of BrdU were administered over a 12 d period. Animals were killed either 1 d or 4 weeks after the last injection of BrdU. We observed frequent cell division throughout the adult rodent spinal cord, particularly in white matter tracts (5-7% of all nuclei). The majority of BrdU-labeled cells colocalized with markers of immature glial cells. At 4 weeks, 10% of dividing cells expressed mature astrocyte and oligodendroglial markers. These data predict that 0.75% of all astrocytes and 0.82% of all oligodendrocytes are derived from a dividing population over a 4 week period. To determine the migratory nature of dividing cells, a single BrdU injection was given to animals that were killed 1 hr after the injection. In these tissues, the distribution and incidence of BrdU labeling matched those of the 4 week post injection (pi) groups, suggesting that proliferating cells divide in situ rather than migrate from the ependymal zone. These data suggest a higher level of cellular plasticity for the intact spinal cord than has previously been observed and that glial progenitors exist in the outer circumference of the spinal cord that can give rise to both astrocytes and oligodendrocytes.
An early hallmark of neuronal degeneration is distal transport loss and axon pathology. Glaucoma involves the degeneration of retinal ganglion cell (RGC) neurons and their axons in the optic nerve. Here we show that, like other neurodegenerations, distal axon injury appears early in mouse glaucoma. Where RGC axons terminate in the superior colliculus, reduction of active transport follows a retinotopic pattern resembling glaucomatous vision loss. Like glaucoma, susceptibility to transport deficits increases with age and is not necessarily associated with elevated ocular pressure. Transport deficits progress distal-to-proximal, appearing in the colliculus first followed by more proximal secondary targets and then the optic tract. Transport persists through the optic nerve head before finally failing in the retina. Although axon degeneration also progresses distal-to-proximal, myelinated RGC axons and their presynaptic terminals persist in the colliculus well after transport fails. Thus, distal transport loss is predegenerative and may represent a therapeutic target.axon transport | optic neuropathy | retinal ganglion cell | glaucoma | optic nerve
It is self-evident that the adult mammalian brain and spinal cord do not regenerate after injury, but recent discoveries have forced a reconsideration of this accepted principle. Advances in our understanding of how the brain develops have provided a rough blueprint for how we may bring about regeneration in the damaged brain. Studies in developmental neurobiology, intracellular signalling and neuroimmunology are bringing the regeneration field closer to success. Notwithstanding these advances, clear and indisputable evidence for adult functional regeneration remains to be shown.
The adult rat spinal cord contains cells that can proliferate and differentiate into astrocytes and oligodendroglia in situ. Using clonal and subclonal analyses we demonstrate that, in contrast to progenitors isolated from the adult mouse spinal cord with a combination of growth factors, progenitors isolated from the adult rat spinal cord using basic fibroblast growth factor alone display stem cell properties as defined by their multipotentiality and self-renewal. Clonal cultures derived from single founder cells generate neurons, astrocytes, and oligodendrocytes, confirming the multipotent nature of the parent cell. Subcloning analysis showed that after serial passaging, recloning, and expansion, these cells retained multipotentiality, indicating that they are self-renewing. Transplantation of an in vitro-expanded clonal population of cells into the adult rat spinal cord resulted in their differentiation into glial cells only. However, after heterotopic transplantation into the hippocampus, transplanted cells that integrated in the granular cell layer differentiated into cells characteristic of this region, whereas engraftment into other hippocampal regions resulted in the differentiation of cells with astroglial and oligodendroglial phenotypes. The data indicate that clonally expanded, multipotent adult progenitor cells from a non-neurogenic region are not lineage-restricted to their developmental origin but can generate region-specific neurons in vivo when exposed to the appropriate environmental cues.Key words : spinal cord; stem cells; FGF; transplantation; neuroplasticity; adult Most neurogenesis in the mammalian CNS is believed to end in the period just after birth (Nornes and Das, 1974;Altman and Bayer, 1984). However, neurogenesis continues in different regions of the brain of various adult mammalian species (Kaplan and Hinds, 1980;Bayer et al., 1982; Alvarez-Buylla, 1993, 1994;Luskin, 1993). The spinal cord, like most structures of the mammalian brain, belongs to the class of nonrenewable epithelium (Rakic, 1985). However, a small number of cells that line the central canal (Adrian and Walker, 1962;Johansson et al., 1999) remain mitotic. We have demonstrated recently that the adult rat spinal cord contains large numbers of dividing cells in vivo that give rise to glia but not neurons (Horner et al., 2000).Multipotent stem cells that respond to epidermal growth factor (EGF) or basic fibroblast growth factor (FGF-2) have been isolated from both neurogenic (Morshead et al., 1994;Palmer et al., 1997) and non-neurogenic regions of the adult mammalian CNS (Temple and Alvarez-Buylla, 1999). Recent studies indicate that embryonic day 14 mouse striatum or adult subventricular zone (SVZ) contains multipotent stem-like cells that are controlled by FGF-2 or EGF in a regulatable manner (Ciccolini and Svendsen, 1998;Gritti et al., 1999). However, this is not true of adult CNS stem cells from all regions, because a combination of EGF and FGF-2 was necessary to isolate stem cells from the adult mouse spinal cord ,...
Functional loss after spinal cord injury (SCI) is caused, in part, by demyelination of axons surviving the trauma. Neurotrophins have been shown to induce oligodendrogliagenesis in vitro, but stimulation of oligodendrocyte proliferation and myelination by these factors in vivo has not been examined. We sought to determine whether neurotrophins can induce the formation of new oligodendrocytes and myelination of regenerating axons after SCI in adult rats. In this study, fibroblasts producing neurotrophin-3 (NT-3), brain-derived neurotrophic factor (BDNF), ciliary neurotrophic factor, nerve growth factor, basic fibroblast growth factor, or beta-galactosidase (control grafts) were transplanted subacutely into the contused adult rat spinal cord. At 10 weeks after injury, all transplants contained axons. NT-3 and BDNF grafts, however, contained significantly more axons than control or other growth factor-producing grafts. In addition, significantly more myelin basic protein-positive profiles were detected in NT-3 and BDNF transplants, suggesting enhanced myelination of ingrowing axons within these neurotrophin-producing grafts. To determine whether augmented myelinogenesis was associated with increased proliferation of oligodendrocyte lineage cells, bromodeoxyuridine (BrdU) was used to label dividing cells. NT-3 and BDNF grafts contained significantly more BrdU-positive oligodendrocytes than controls. The association of these new oligodendrocytes with ingrowing myelinated axons suggests that NT-3- and BDNF-induced myelinogenesis resulted, at least in part, from expansion of oligodendrocyte lineage cells, most likely the endogenous oligodendrocyte progenitors. These findings may have significant implications for chronic demyelinating diseases or CNS injuries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.