In the setting of bipolar bone injury, orthopedic surgeons are currently making use of the glenoid track method to guide surgical management. Using preoperative CT or MR imaging, this method allows the identification of patients who are more likely to fail a primary capsuloligamentous Bankart repair. As the glenoid track method becomes increasingly used in preoperative planning, it is important for the radiologist to become familiar with its concept and method of calculation. This review article aims to concisely summarize the current literature and the clinical implications of the glenoid track method.
Renal disease is epidemic in the United States with approximately 8 Â 10 6 people having chronic kidney disease. Renal biopsies are widely used to provide essential diagnostic information to physicians. However, the risk of bleeding complications possibly leading to lifethreatening situations results in the contra-indication of biopsy in certain patient populations. Safer renal biopsies will allow more accurate diagnosis and better management of this epidemic health problem. We report the preclinical testing of a novel biopsy device called the therapeutic injection system (TIS). The device introduces a third stage to the standard two-stage side-cut percutaneous biopsy process. The third stage is designed to reduce bleeding complications by injecting a hemostatic plug at the time of biopsy. Laboratory evaluation and preliminary in vivo animal testing using an anticoagulated porcine model of the TIS and Bard Monopty V R (Bard Medical, Covington, GA) control device were performed. The hemostatic material Gelfoam V R (Pfizer, Brussels, Belgium) was selected as the active material comprising the hemostatic plugs. The performance of two composite plugs, one composed of polyvinyl alcohol (PVA) combined in 2:1 and 12:1 ratios with the hemostatic material, and one plug composed of 100% hemostatic material were tested. Stroke sequence and hemostatic plug deployment were verified by sequential firing of the TIS biopsy needle into clear gelatin and ex vivo bovine kidney specimens. In vivo trials with porcine specimens revealed a significant reduction in blood loss (8.163.9 ml, control versus 1.961.6 ml, 12:1 PVA/hemostatic, TIS, a ¼ 0.01, n ¼ 6). The 100% hemostatic plug showed a substantial and immediate reduction in blood loss (9.2 ml, control versus 0.0 ml, TIS, n ¼ 1). The prototype device was shown to work repeatedly and reliably in laboratory trials. Initial results show promise in this approach to control post biopsy bleeding. This solution maintains the simplicity and directness of the percutaneous approach, while not significantly changing the standard percutaneous biopsy procedure.
The publication of this Accepted Manuscript is provided to give early visibility to the contents of the article, which will undergo additional copyediting, typesetting, and review before it is published in its final form. During the production process, errors may be discovered that could affect the content of the Accepted Manuscript. All legal disclaimers that apply to the journal pertain. The reader is cautioned to consult the definitive version of record before relying on the contents of this document.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.