A simple four-panel transducer capable of producing a beam with a screw dislocation along its axis was constructed and evaluated. A screw dislocation in a wavefront is characterized by a phase dependence about the dislocation axis that varies as exp(−imφ), where m is an integer and φ is the angle about the axis. At the axis, the phase is indeterminate and as a result there is a corresponding null in the pressure magnitude. The screw dislocation in the transducer beam is along the beam axis and is found to exist in both the far- and near-fields of the transducer. This null then clearly indicates the axis of the beam at all distances and has the potential to be used as an aid in the alignment of objects in sonar experiments or other similar applications. The helicoidal wave is also shown to possess axial angular momentum. A related transducer was summarized previously [J. Acoust. Soc. Am. 103, 2971 (1998)] and is also discussed here for the purposes of comparison.
An expression is derived for the radiation force on a sphere placed on the axis of an ideal acoustic Bessel beam propagating in an inviscid fluid. The expression uses the partial-wave coefficients found in the analysis of the scattering when the sphere is placed in a plane wave traveling in the same external fluid. The Bessel beam is characterized by the cone angle beta of its plane wave components where beta=0 gives the limiting case of an ordinary plane wave. Examples are found for fluid spheres where the radiation force reverses in direction so the force is opposite the direction of the beam propagation. Negative axial forces are found to be correlated with conditions giving reduced backscattering by the beam. This condition may also be helpful in the design of acoustic tweezers for biophysical applications. Other potential applications include the manipulation of objects in microgravity. Islands in the (ka, beta) parameter plane having a negative radiation force are calculated for the case of a hexane drop in water. Here k is the wave number and a is the drop radius. Low frequency approximations to the radiation force are noted for rigid, fluid, and elastic solid spheres in an inviscid fluid.
Various researchers have predicted situations where the acoustical or optical radiation force on a sphere centered on a Bessel beam is opposite the direction of beam propagation. We develop the analogy between acoustical and optical radiation forces of arbitrary-order helicoidal and ordinary Bessel beams to gain insight into negative radiation forces. The radiation force is expressed in terms of the asymmetry of the scattered field, the scattered power, the absorbed power, and the conic angle of the Bessel beam and is related to the partial-wave coefficients for the scattering. Negative forces only occur when the scattering into the backward hemisphere is suppressed relative to the scattering into the forward hemisphere. Absorbed power degrades negative radiation forces.
An acoustic vortex in an inviscid fluid and its radiation torque on an axisymmetric absorbing object are analyzed beyond the paraxial approximation to clarify an analogy with an optical vortex. The angular momentum flux density tensor from the conservation of angular momentum is used as an efficient description of the transport of angular momentum. Analysis of a monochromatic nonparaxial acoustic vortex beam indicates that the local ratio of the axial (or radial) flux density of axial angular momentum to the axial (or radial) flux density of energy is exactly equal to the ratio of the beam's topological charge l to the acoustic frequency ω. The axial radiation torque exerted by the beam on an axisymmetric object centered on the beam's axis due to the transfer of angular momentum is proportional to the power absorbed by the object with a factor l/ω, which can be understood as a result of phonon absorption from the beam. Depending on the vortex's helicity, the torque is parallel or antiparallel to the beam's axis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.