The aims of this work were as follows: 1) to determine whether a purified diet currently used for studies with rats was acceptable for reproductive studies in frogs; and 2) to determine whether frogs are sensitive to a deficit of boron (B) in the diet. Adult Xenopus laevis were fed a nonpurified beef liver and lung (BLL) diet (310 microg B/kg), a purified diet supplemented with boron (+B; 1850 microg B/kg), or a purified diet low in boron (-B; 45 microg B/kg) for 120 d. Frogs fed the BLL and +B diets produced 11.3 and 12.2% necrotic eggs, respectively. Abnormal gastrulation occurred in <4% of the fertilized eggs in both groups, and 96-h larval survival exceeded 75% in both groups. In contrast, frogs fed the -B diet for 120 d produced a high proportion of necrotic eggs (54%). Fertilized embryos from the -B diet-fed frogs showed a high frequency of abnormal gastrulation (26.8%), and >80% of the embryos died before 96 h of development. Mean embryo cell counts at X. laevis developmental stage 7.5 (mid-blastula) were significantly lower in the -B embryos than in the BLL or +B embryos. BLL and -B embryos grown in low boron culture media had a high frequency of malformations compared with embryos grown in boron-supplemented media. These studies show that a purified diet that has been used in rodent studies was acceptable for reproduction studies in X. laevis. This work also demonstrates that a diet low in boron markedly impairs normal reproductive function in adult X. laevis, and that administration of the low boron diet results in an increase in both incidence and severity of adverse effects. In addition, these studies demonstrate the usefulness of the X. laevis model in nutrition studies.
Daily dietary-boron intake and on-the-job inspired boron were compared with blood-and urine-boron concentrations in workers engaged in packaging and shipping borax. Fourteen workers handling borax at jobs of low, medium, and high dust exposures were sampled throughout full shifts for 5 consecutive days each. Airborne borax concentrations ranged from means of 3.3 mg/mi3 to 18 mg/m3, measured gravimetrically. End-of-shift mean blood-boron concentrations ranged from 0.1 1 to 0.26 pg/g; end-of-shift mean urine concentrations ranged from 3.16 to 10.72 pg/mg creatinine. Creatinine measures were used to adjust for differences in urine-specific gravity such that 1 ml of urine contains approximately 1 mg creatinine. There was no progressive increase in end-of-shift blood-or urine-boron concentrations across the days of the week. Urine testing done at the end of the work shift gave a somewhat better estimate of borate exposure than did blood testing, was sampled more easily, and was analytically less difficult to perform. Personal air samplers of two types were used: one, the 37-mm closed-face, two-piece cassette to estimate total dust and the other, the Institute of Occupational Medicine (IOM) sampler to estimate inspirable particulate mass. Under the conditions of this study, the IOM air sampler more nearly estimated human exposure as measured by blood-and urine-boron levels than did the sampler that measured total dust. The highest mean blood-and urine-boron levels in the workers were approximately an order of magnitude lower than blood and urine values found by others in dogs during feeding studies conducted as part of reproductive toxicity studies at the no-observed-adverse-effect level (NOAEL). The mean dietary intake of the workers was 1.35 mg boron/day, close to the 1.521 mg boron/day reported recently for the standard U.S. diet. Total estimated boron intake, which is diet plus environmental exposure, had for the high-borax dust exposure group a mean daily boron intake of 27.90 mg/day or, based on the body weights of the subjects, 0.38 mg boron/kg/day. These subjects had a mean blood-boron level of 0.26 pg boron/g blood, a factor of 10 lower than found in the dog or rat at NOAEL exposure levels. -Environ Health Perspect 102(Suppl 7): 133-137 (1994)
To date, boron (B) essentiality has not been conclusively shown in mammals. This article summarizes the results of a series of in vitro and in vivo experiments designed to investigate the role of B in mammalian reproduction. In the first study, rat dams were fed either a low (0.04 microg B/g) or an adequate (2.00 microg B/g) B diet for 6 wk before breeding and through pregnancy; reproductive outcome was monitored on gestation day 20. Although low dietary B significantly lowered maternal blood, liver, and bone B concentrations, it had no marked effects on fetal growth or development. The goal of the second study was to assess the effects of B on the in vitro development of rat postimplantation embryos. Day 10 embryos collected from dams fed either the low or adequate B diets for at least 12 wk were cultured in serum collected from male rats exposed to one of the two dietary B treatments. Dams fed the low B diet had a significantly reduced number of implantation sites compared to dams fed the B-adequate diet. However, embryonic growth in vitro was not affected by B treatment. The aim of study 3 was to define the limits of boric acid (BA) toxicity on mouse preimplantation development in vitro. Two-cell mouse embryos were cultured in media containing graded levels of BA (from 6 to 10,000 microM). Impaired embryonic differentiation and proliferation were observed only when embryos were exposed to high levels of BA (>2000 microM), reflecting a very low level of toxicity of BA on early mouse embryonic development. Study 4 tested the effects of low (0.04 microg B/g) and adequate (2.00 microg B/g) dietary B on the in vitro development of mouse preimplantation embryos. Two-cell embryos obtained from the dams were cultured in vitro for 72 h. Maternal exposure to the low B diet for 10, 12, and 16 wk was associated with a reduction in blastocyst formation, a reduction in blastocyst cell number, and an increased number of degenerates. Collectively, these studies support the concept that B deficiency impairs early embryonic development in rodents.
Boron occurs most frequently in nature as borates and boric acid, never as the free element. Its largest uses are in glass, detergents, and agriculture. Essential for higher plants, there is growing evidence for essentiality in vertebrates. Humans consume daily about a milligram of boron, mostly from fruit and vegetables. At high doses, boron is a developmental and reproductive toxin in animals. Pregnant rats were the most sensitive. An oral NOAEL of 9.6 mg B/kg/day was established for developmental toxicity in Sprague-Dawley rats fed boric acid. To extrapolate from the large, animal boron toxicity database to humans, especially to pregnant women, information on renal clearance of boron was needed. This study's purpose was to measure renal clearance of boron in pregnant and nonpregnant woman. In 16 second trimester women and 15 nonpregnant age-matched referents, dietary boron provided the blood and urine boron concentrations used for calculating boron clearance. The pregnant and nonpregnant boron intake was 1.35 and 1.31 mg boron/24 h, respectively. Blood for boron, creatinine, and urea was collected at the start, at 2 h, and at 24 h. Urine was collected during the first 2 h in the Clinical Research Center and during a 22-h period outside the center for measurement of volume, boron, and creatinine. Renal boron clearance measured over the initial 2 h, the most complete urine collection period, was 68.30ml/min/1.73 m(2) for pregnant subjects and 54.31ml/min/1.73 m(2) for nonpregnant subjects. Comparison of renal boron clearance with creatinine clearance indicated that tubular reabsorption of boron occurred in both pregnant and nonpregnant women.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.