We study the strategic implications that arise from adding one extra option to the miners participating in the bitcoin protocol. We propose that when adding a block, miners also have the ability to pay forward an amount to be collected by the first miner who successfully extends their branch, giving them the power to influence the incentives for mining. We formulate a stochastic game for the study of such incentives and show that with this added option, smaller miners can guarantee that the best response of even substantially more powerful miners is to follow the expected behavior intended by the protocol designer.
We consider the problem of fairly allocating a set of indivisible goods to a set of strategic agents with additive valuation functions. We assume no monetary transfers and, therefore, a mechanism in our se ing is an algorithm that takes as input the reported-rather than the true-values of the agents. Our main goal is to explore whether there exist mechanisms that have pure Nash equilibria for every instance and, at the same time, provide fairness guarantees for the allocations that correspond to these equilibria. We focus on two relaxations of envy-freeness, namely envy-freeness up to one good (EF1), and envy-freeness up to any good (EFX), and we positively answer the above question. In particular, we study two algorithms that are known to produce such allocations in the non-strategic se ing: Round-Robin (EF1 allocations for any number of agents) and a cut-and-choose algorithm of Plaut and Roughgarden [42] (EFX allocations for two agents). For Round-Robin we show that all of its pure Nash equilibria induce allocations that are EF1 with respect to the underlying true values, while for the algorithm of Plaut and Roughgarden we show that the corresponding allocations not only are EFX but also satisfy maximin share fairness, something that is not true for this algorithm in the non-strategic se ing! Further, we show that a weaker version of the la er result holds for any mechanism for two agents that always has pure Nash equilibria which all induce EFX allocations. * is work was supported by the ERC Advanced Grant 788893 AMDROMA "Algorithmic and Mechanism Design Research in Online Markets", the MIUR PRIN project ALGADIMAR "Algorithms, Games, and Digital Markets", and the NWO Veni project No. VI.Veni.192.153.
A celebrated impossibility result by Myerson and Satterthwaite (1983) shows that any truthful mechanism for two-sided markets that maximizes social welfare must run a deficit, resulting in a necessity to relax welfare efficiency and the use of approximation mechanisms. Such mechanisms in general make extensive use of the Bayesian priors. In this work, we investigate a question of increasing theoretical and practical importance: how much prior information is required to design mechanisms with near-optimal approximations?Our first contribution is a more general impossibility result stating that no meaningful approximation is possible without any prior information, expanding the famous impossibility result of Myerson and Satterthwaite.Our second contribution is that one single sample (one number per item), arguably a minimum-possible amount of prior information, from each seller distribution is sufficient for a large class of two-sided markets. We prove matching upper and lower bounds on the best approximation that can be obtained with one single sample for subadditive buyers and additive sellers, regardless of computational considerations.Our third contribution is the design of computationally efficient blackbox reductions that turn any one-sided mechanism into a two-sided mechanism with a small loss in the approximation, while using only one single sample from each seller. On the way, our
We study the multistage K-facility reallocation problem on the real line, where we maintain K facility locations over T stages, based on the stage-dependent locations of n agents. Each agent is connected to the nearest facility at each stage, and the facilities may move from one stage to another, to accommodate different agent locations. The objective is to minimize the connection cost of the agents plus the total moving cost of the facilities, over all stages. K-facility reallocation was introduced by de Keijzer and Wojtczak [10], where they mostly focused on the special case of a single facility. Using an LP-based approach, we present a polynomial time algorithm that computes the optimal solution for any number of facilities. We also consider online K-facility reallocation, where the algorithm becomes aware of agent locations in a stage-by-stage fashion. By exploiting an interesting connection to the classical K-server problem, we present a constant-competitive algorithm for K = 2 facilities. 1 consecutive timesteps. The stability of the solutions is modeled by introducing an additional moving cost (or switching cost), which has a different definition depending on the particular setting. Model and Motivation.In this work, we study the multistage K-facility reallocation problem on the real line, introduced by de Keijzer and Wojtczak [10]. In K-facility reallocation, K facilities are initially located at (x 0 1 , . . . , x 0 K ) on the real line. Facilities are meant to serve n agents for the next T days. At each day, each agent connects to the facility closest to its location and incurs a connection cost equal to this distance. The locations of the agents may change every day, thus we have to move facilities accordingly in order to reduce the connection cost. Naturally, moving a facility is not for free, but comes with the price of the distance that the facility was moved. Our goal is to specify the exact positions of the facilities at each day so that the total connection cost plus the total moving cost is minimized over all T days. In the online version of the problem, the positions of the agents at each stage t are revealed only after determining the locations of the facilities at stage t − 1.For a motivating example, consider a company willing to advertise its products. To this end, it organizes K advertising campaigns at different locations of a large city for the next T days. Based on planned events, weather forecasts, etc., the company estimates a population distribution over the locations of the city for each day. Then, the company decides to compute the best possible campaign reallocation with K campaigns over all days (see also [10] for more examples).de Keijzer and Wojtczak [10] fully characterized the optimal offline and online algorithms for the special case of a single facility and presented a dynamic programming algorithm for K ≥ 1 facilities with running time exponential in K. Despite the practical significance and the interesting theoretical properties of Kfacility reallocation, its computationa...
Constrained submodular maximization problems encompass a wide variety of applications, including personalized recommendation, team formation, and revenue maximization via viral marketing. The massive instances occurring in modern-day applications can render existing algorithms prohibitively slow. Moreover, frequently those instances are also inherently stochastic. Focusing on these challenges, we revisit the classic problem of maximizing a (possibly non-monotone) submodular function subject to a knapsack constraint. We present a simple randomized greedy algorithm that achieves a 5.83-approximation and runs in O(n log n) time, i.e., at least a factor n faster than other state-of-the-art algorithms. The versatility of our approach allows us to further transfer it to a stochastic version of the problem. There, we obtain a (9 + ε)-approximation to the best adaptive policy, which is the first constant approximation for non-monotone objectives. Experimental evaluation of our algorithms showcases their improved performance on real and synthetic data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.