a b s t r a c tThe National Strategy for Pandemic Influenza outlines a plan for community response to a potential pandemic. In this outline, state and local communities are charged with enhancing their preparedness. In order to help public health officials better understand these charges, we have developed a visual analytics toolkit (PanViz) for analyzing the effect of decision measures implemented during a simulated pandemic influenza scenario. Spread vectors based on the point of origin and distance traveled over time are calculated and the factors of age distribution and population density are taken into effect. Healthcare officials are able to explore the effects of the pandemic on the population through a geographical spatiotemporal view, moving forward and backward through time and inserting decision points at various days to determine the impact. Linked statistical displays are also shown, providing county level summaries of data in terms of the number of sick, hospitalized and dead as a result of the outbreak. Currently, this tool has been deployed in Indiana State Department of Health planning and preparedness exercises, and as an educational tool for demonstrating the impact of social distancing strategies during the recent H1N1 (swine flu) outbreak.
When analyzing metabolomics data, cancer care researchers are searching for differences between known healthy samples and unhealthy samples. By analyzing and understanding these differences, researchers hope to identify cancer biomarkers. Due to the size and complexity of the data produced, however, analysis can still be very slow and time consuming. This is further complicated by the fact that datasets obtained will exhibit incidental differences in intensity and retention time, not related to actual chemical differences in the samples being evaluated. Additionally, automated tools to correct these errors do not always produce reliable results. This work presents a new analytics system that enables interactive comparative visualization and analytics of metabolomics data obtained by two-dimensional gas chromatography-mass spectrometry (GC × GC-MS). The key features of this system are the ability to produce visualizations of multiple GC × GC-MS data sets, and to explore those data sets interactively, allowing a user to discover differences and features in real time. The system provides statistical support in the form of difference, standard deviation, and kernel density estimation calculations to aid users in identifying meaningful differences between samples. These are combined with novel transfer functions and multiform, linked visualizations in order to provide researchers with a powerful new tool for GC × GC-MS exploration and bio-marker discovery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.