Abstract. VEGAN adds vegetation analysis functions to the general‐purpose statistical program R. Both R and VEGAN can be downloaded for free. VEGAN implements several ordination methods, including Canonical Correspondence Analysis and Non‐metric Multidimensional Scaling, vector fitting of environmental variables, randomization tests, and various other analyses of vegetation data. It can be used for large data. Graphical output can be customized using the R language's extensive graphics capabilities. VEGAN is appropriate for routine and research use, if you are willing to learn some R.
Matrix population models require the population to be divided into discrete stage classes. In many cases, especially when classes are defined by a continuous variable, such as length or mass, there are no natural breakpoints, and the division is artificial. We introduce the ''integral projection model,'' which eliminates the need for division into discrete classes, without requiring any additional biological assumptions. Like a traditional matrix model, the integral projection model provides estimates of the asymptotic growth rate, stable size distribution, reproductive values, and sensitivities of the growth rate to changes in vital rates. However, where the matrix model represents the size distributions, reproductive value, and sensitivities as step functions (constant within a stage class), the integral projection model yields smooth curves for each of these as a function of individual size. We describe a method for fitting the model to data, and we apply this method to data on an endangered plant species, northern monkshood (Aconitum noveboracense), with individuals classified by stem diameter. The matrix and integral models yield similar estimates of the asymptotic growth rate, but the reproductive values and sensitivities in the matrix model are sensitive to the choice of stage classes. The integral projection model avoids this problem and yields size-specific sensitivities that are not affected by stage duration. These general properties of the integral projection model will make it advantageous for other populations where there is no natural division of individuals into stage classes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.