The subsurface transport of inorganic and organic contaminants may be strongly related to the movement of dissolved organic carbon (DOC) through a soil profile. A variety of soil chemical and hydrologic factors control the mobility of the DOC, which may enhance or impede the transport of the associated contaminants. In this study, the sources of DOC adsorption on two proposed waste‐site soils are defined, and the chemical mechanisms operative during the adsorption process are specified. Adsorption isotherms for the two soils determined at constant pH, ionic strength (I), and temperature indicated that DOC adsorption increased with increasing soil profile depth. Different adsorption capacities were exhibited by the two soils, however, which was related to their contrasting indigenous organic matter contents and mineralogies. The adsorption of DOC by the soils was not a function of solution I (I = 0.001 to 0.1 mol L−1 using NaCl); however, DOC adsorption was dependent on solution pH, with maximum adsorption occurring at ≃4.5. Competitive ion‐exchange studies using Na2SO4 as an ionic‐strength adjuster suggested that a portion of the DOC was electrostatically bound to the soil via anion exchange. By using thermodynamic principles, the predominant mechanism of DOC retention by the soil was found to be physical adsorption driven by favorable entropy changes. This is supported by preferential adsorption of the hydrophobic organic solutes to the soil relative to the hydrophilic organic solutes.
In situ microbial reduction of soluble U(VI) to sparingly soluble U(IV) was evaluated at the site of the former S-3 Ponds in Area 3 of the U.S. Department of Energy Natural and Accelerated Bioremediation Research Field Research Center, Oak Ridge, TN. After establishing conditions favorable for bioremediation (Wu, et al. Environ. Sci. Technol. 2006, 40, 3988-3995), intermittent additions of ethanol were initiated within the conditioned inner loop of a nested well recirculation system. These additions initially stimulated denitrification of matrix-entrapped nitrate, but after 2 months, aqueous U levels fell from 5 to approximately 1 microM and sulfate reduction ensued. Continued additions sustained U(VI) reduction over 13 months. X-ray near-edge absorption spectroscopy (XANES) confirmed U(VI) reduction to U(IV) within the inner loop wells, with up to 51%, 35%, and 28% solid-phase U(IV) in sediment samples from the injection well, a monitoring well, and the extraction well, respectively. Microbial analyses confirmed the presence of denitrifying, sulfate-reducing, and iron-reducing bacteria in groundwater and sediments. System pH was generally maintained at less than 6.2 with low bicarbonate level (0.75-1.5 mM) and residual sulfate to suppress methanogenesis and minimize uranium mobilization. The bioavailability of sorbed U(VI) was manipulated by addition of low-level carbonate (< 5 mM) followed by ethanol (1-1.5 mM). Addition of low levels of carbonate increased the concentration of aqueous U, indicating an increased rate of U desorption due to formation of uranyl carbonate complexes. Upon ethanol addition, aqueous U(VI) levels fell, indicating that the rate of microbial reduction exceeded the rate of desorption. Sulfate levels simultaneously decreased, with a corresponding increase in sulfide. When ethanol addition ended but carbonate addition continued, soluble U levels increased, indicating faster desorption than reduction. When bicarbonate addition stopped, aqueous U levels decreased, indicating adsorption to sediments. Changes in the sequence of carbonate and ethanol addition confirmed that carbonate-controlled desorption increased bioavailability of U(VI) for reduction.
The pH-dependent adsorption of U(VI) onto three heterogeneous, subsurface media from the Department of Energy (DOE) Oak Ridge Reservation, Savannah River Site, and Hanford Reservation was investigated. The three materials contained significant quantities of iron and manganese oxides with nearly identical extractable iron oxide contents (25.3-25.8 g/kg). A model independently developed for the adsorption of U(VI) to synthetic ferrihydrite (Waite, T. D.; Davis, J. A.; Payne, T. E.; Waychunas, G. A.; Xu, N. Geochim. Cosmochim. Acta 1994, 58, 5465-5478) was able to predict the major features of the pH-dependent U(VI) adsorption to the materials under the assumption that all the dithionite-citrate-bicarbonate extractable iron oxide was present as ferrihydrite. Further experiments with the Oak Ridge soil as a function of carbonate and U(VI) concentration indicated that the model could predict pH-dependent U(VI) adsorption to within a root mean square error of 0.163-0.408, even under conditions outside of those for which the model was developed. These results indicate that this model could be used as a first approximation in predicting U(VI) adsorption and transport in the subsurface. U(VI) adsorption also decreased at pH >10, even in the absence of carbonate, which is of potential importance to U(VI) mobility in extreme environments present in the subsurface at some DOE facilities. The pH-dependent adsorption of U(VI) was fundamentally different in systems with a constant CO2 partial pressure as compared to a constant total carbonate concentration. Experiments at constant CO2 partial pressure may not be representative of the conditions present in the subsurface, and a constant carbonate concentration does not always result in decreased U(VI) adsorption at higher pH values.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.