Many favorable metabolic effects have been attributed to thermogenic activity of brown adipose tissue (BAT). Yet, time of day has rarely been considered in this field of research. Here, we show that a diurnal rhythm in BAT activity regulates plasma lipid metabolism. We observed a high-amplitude rhythm in fatty acid uptake by BAT that synchronized with the light/dark cycle. Highest uptake was found at the onset of the active period, which coincided with high lipoprotein lipase expression and low angiopoietin-like 4 expression by BAT. Diurnal rhythmicity in BAT activity determined the rate at which lipids were cleared from the circulation, thereby imposing the daily rhythm in plasma lipid concentrations. In mice as well as humans, postprandial lipid excursions were nearly absent at waking. We anticipate that diurnal BAT activity is an important factor to consider when studying the therapeutic potential of promoting BAT activity.
Lipoprotein lipase (LPL) catalyzes the breakdown of circulating triglycerides in muscle and fat. LPL is inhibited by several proteins, including angiopoietin-like 4 (ANGPTL4), and may be cleaved by members of the proprotein convertase subtilisin/kexin (PCSK) family. Here, we aimed to investigate the cleavage of LPL in adipocytes by PCSKs and study the potential involvement of ANGPTL4. A substantial portion of LPL in mouse and human adipose tissue was cleaved into N- and C-terminal fragments. Treatment of different adipocytes with the PCSK inhibitor decanoyl-RVKR-chloromethyl ketone markedly decreased LPL cleavage, indicating that LPL is cleaved by PCSKs. Silencing of / significantly decreased LPL cleavage in cell culture medium and lysates of 3T3-L1 adipocytes. Remarkably, PCSK-mediated cleavage of LPL in adipocytes was diminished by silencing and was decreased in adipocytes and adipose tissue of mice. Differences in LPL cleavage between and WT mice were abrogated by treatment with decanoyl-RVKR-chloromethyl ketone. Induction of ANGPTL4 in adipose tissue during fasting enhanced PCSK-mediated LPL cleavage, concurrent with decreased LPL activity, in WT but not mice. In adipocytes, after removal of cell surface LPL by heparin, levels of N-terminal LPL were still markedly higher in WT compared with adipocytes, suggesting that stimulation of PCSK-mediated LPL cleavage by ANGPTL4 occurs intracellularly. Finally, treating adipocytes with insulin increased full-length LPL and decreased N-terminal LPL in an ANGPTL4-dependent manner. In conclusion, ANGPTL4 promotes PCSK-mediated intracellular cleavage of LPL in adipocytes, likely contributing to regulation of LPL in adipose tissue. Our data provide further support for an intracellular action of ANGPTL4 in adipocytes.
Elevated plasma triglyceride levels are increasingly considered as an independent risk factor for cardiovascular diseases (1-3). Triglycerides circulate in the blood in two major forms: as chylomicrons carrying the dietary triglycerides and as very low density lipoproteins carrying endogenously produced triglycerides (4). The clearance of plasma triglycerides is primarily mediated by the action of LPL. This secretory enzyme is produced by parenchymal cells of fat tissue, skeletal muscle, and heart, as well as by macrophages. With the help of the endothelial protein, glycosylphosphatidylinositol-anchored HDL binding protein 1 (GPIHBP1), LPL is transferred from the surface of the sub-endothelial myocytes and adipocytes to the luminal side of the capillary endothelium. There, LPL hydrolyzes the triglycerides contained in the triglyceride-rich lipoproteins to release fatty acids for uptake by the underlying tissues (5-8). The activity of LPL is regulated posttranslationally by numerous factors, many of which are produced in the liver, including several apolipoproteins. In addition, LPL activity is governed by several members of the family of angiopoietin-like proteins (ANGPTLs): ANGPTL3 (9), ANGPTL4 (10-12), and ANGPTL8 (13-15). ANGPTL3 is produced in the liver and cooperates with ANGPTL8 to inhibit LPL activity in peripheral tissues Abstract Angiopoietin-like protein (ANGPTL)4 regulates plasma lipids, making it an attractive target for correcting dyslipidemia. However, ANGPTL4 inactivation in mice fed a high fat diet causes chylous ascites, an acute-phase response, and mesenteric lymphadenopathy. Here, we studied the role of ANGPTL4 in lipid uptake in macrophages and in the above-mentioned pathologies using Angptl4-hypomorphic and Angptl4 / mice. Angptl4 expression in peritoneal and bone marrow-derived macrophages was highly induced by lipids. Recombinant ANGPTL4 decreased lipid uptake in macrophages, whereas deficiency of ANGPTL4 increased lipid uptake, upregulated lipid-induced genes, and increased respiration. ANGPTL4 deficiency did not alter LPL protein levels in macrophages. Angptl4-hypomorphic mice with partial expression of a truncated N-terminal ANGPTL4 exhibited reduced fasting plasma triglyceride, cholesterol, and NEFAs, strongly resembling Angptl4 / mice. However, during high fat feeding, Angptl4-hypomorphic mice showed markedly delayed and attenuated elevation in plasma serum amyloid A and much milder chylous ascites than Angptl4 / mice, despite similar abundance of lipid-laden giant cells in mesenteric lymph nodes. In conclusion, ANGPTL4 deficiency increases lipid uptake and respiration in macrophages without affecting LPL protein levels. Compared with the absence of ANGPTL4, low levels of N-terminal ANGPTL4 mitigate the development of chylous ascites and an acutephase response in mice.-Oteng, A-B.
Brown adipose tissue (BAT) catabolizes glucose and fatty acids to produce heat and thereby contributes to energy expenditure. Long-term high-fat diet (HFD) feeding results in so-called ‘whitening’ of BAT characterized by increased lipid deposition, mitochondrial dysfunction, and reduced fat oxidation. The aim of the current study was to unravel the rate and related mechanisms by which HFD induces BAT whitening and insulin resistance. Wild-type mice were fed a HFD for 0, 1, 3, or 7 days. Within 1 day of HFD, BAT weight and lipid content were increased. HFD also immediately reduced insulin-stimulated glucose uptake by BAT, indicating rapid induction of insulin resistance. This was accompanied by a tendency toward a reduced uptake of triglyceride-derived fatty acids by BAT. Mitochondrial mass and Ucp1 expression were unaltered, whereas after 3 days of HFD, markers of mitochondrial dynamics suggested induction of a more fused mitochondrial network. Additionally, HFD also increased macrophage markers in BAT after 3 days of HFD. Counterintuitively, the switch to HFD was accompanied by an acute rise in core body temperature. We showed that a single day of HFD feeding is sufficient to induce the first signs of whitening and insulin resistance in BAT, which reduces the uptake of glucose and triglyceride-derived fatty acids. BAT whitening and insulin resistance are likely sustained by reduced mitochondrial oxidation due to changes in mitochondrial dynamics and macrophage infiltration, respectively. Likely, the switch to HFD swiftly induces thermogenesis in other metabolic organs, which allows attenuation of BAT thermogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.